Skip to main content
Log in

Performance Evaluation of Epitaxial Layer Based Gate Modulated TFET (GM-TFET)

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reports the performance of an epitaxial layer (ETL) based gate modulated (GM-TFET) through 3D Technology Computer Aided Design (TCAD) simulations. The architecture utilizes effects of both vertical tunneling and lateral tunneling phenomena to improve the device performance. Attributes of the ETL, its thickness (tepi) and doping concentration (Nepi) are varied and their impact on device electrical parameters such as transfer characteristic, output performance, subthreshold swing (SS), and threshold voltage (VT) is highlighted. It is observed that both tepi and Nepi significantly influence the different electrical parameters of the ETL based TFET architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no any other data and material associated with this manuscript.

References

  1. Chakraborty S, Mallik A, Sarkar CK, Ramgopal Rao V (2007) Impact of halo doping on the subthreshold performance of deep-submicrometer CMOS devices and circuits for ultralow power analog/mixed-signal applications. IEEE Trans Electron Devices 54(2):241–248

    Article  Google Scholar 

  2. Choi WY, Park B-G, Lee J-D, Liu T-JK(2007) Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745

    Article  CAS  Google Scholar 

  3. Bhuwalka KK, Schulze J, Eisele I (2005) Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans Electron Devices 52(5):909–917

    Article  CAS  Google Scholar 

  4. Boucart K, Ionescu AM (2007)Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54(7):1725–1733

    Article  CAS  Google Scholar 

  5. Koswatta SO, Lundstrom MS (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56(3):456–465

    Article  CAS  Google Scholar 

  6. Chander S, Bhowmick B, Baishya S (2015) Heterojunction fully depleted SOI-TFET with oxide/source overlap. Superlattice Microst 86:43–50

    Article  CAS  Google Scholar 

  7. Fan M, Hu VP, Chen Y, Hsu C, Su P, Chuang C (2015) Investigation of back gate-biasing effect for ultrathin-body III-V heterojunction tunnel FET. IEEE Trans Electron Devices 62:107–113

    Article  CAS  Google Scholar 

  8. Goswami R, Bhowmick B, Baishya S (2015) Electrical noise in circular gate tunnel FET in presence of interface traps. Superlattice Microst 86:342–354

    Article  CAS  Google Scholar 

  9. Liu L, Mohata D, Datta S (2012) Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans Electron Devices 59(4):902–908

    Article  CAS  Google Scholar 

  10. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S (2017)2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Trans Electron Devices 64:960–968

    Article  CAS  Google Scholar 

  11. Wang PY, Tsui BY (2013) Epitaxial tunnel layer structure for P-channel tunnel FET improvement. IEEE Trans Electron Devices 60(12):4098–4104

    Article  CAS  Google Scholar 

  12. Wang PY, Tsui BY (2015) Epitaxial tunnel layer structure for complementary tunnel FETs enhancement. In: Proc. Int. Conf. SSDM, no. 1001, pp 72–73. https://doi.org/10.7567/ssdm

  13. Sant S, Schenk A (2016) Methods to enhance the performance of InGaAs/InP heterojunction tunnel FETs. IEEE Trans Electron Devices 63(5):2169–2175.  https://doi.org/10.1109/TED.2015.2489844

  14. Blaeser S, Glass S, Schulte-Braucks C, Narimani K, Driesch NV, Wirths S, Tiedemann AT, Trellenkamp S, Buca D, Zhao QT, Mantl S (2015) Novel SiGe / Si line tunneling TFET with high I on at low VDD and constant SS. IEEE Int Electron Devices Meet 9(2):22.3.1–22.3.4. https://doi.org/10.1109/IEDM.2015.7409757

  15. Wang PY, Tsui BY (2016) Investigation into gate-to-source capacitance induced by highly efficient band-to-band tunneling in p-channel Ge epitaxial tunnel layer tunnel FET. IEEE Trans Electron Devices 63(4):1788–1790

    Article  CAS  Google Scholar 

  16. De Michielis L, Lattanzio L, Palestri P, Selmi L, Ionescu AM (2011)Tunnel-FET architecture with improved performance due to enhanced gate modulation of the tunneling barrier,. 69th Device Research Conference, Santa Barbara, CA, pp 111–112. https://doi.org/10.1109/DRC.2011.5994440

  17. Saha R, Vanlalawmpuia K, Bhowmick B, Baishya S (2019) Deep insight into DC, RF/analog, and digital inverter performance due to variation in straggle parameter for gate modulated TFET. Mater Sci Semicond Process 91:102–107

  18. Saha R, Bhowmick B, Baishya S (2020) Impact of lateral straggle on linearity performance in gate-modulated(GM) TFET. Appl Phys Mater Sci Process 126:201

    Article  CAS  Google Scholar 

  19. Saha R, Panda DK, Goswami R, Bhowmick B, Baishya S (2021) analysis on effect of lateral straggle on analog, high frequency and DC parameters in Ge-source DMDG TFET. Int J RF Microwave Comput Aided Eng 31(4):e22579. https://doi.org/10.1002/mmce.22579

  20. Saha R (2020) Linearity parameters evaluation due to lateral straggle in Ge-Source DMDG-TFET. Silicon. https://doi.org/10.1007/s12633-020-00859-7

    Article  Google Scholar 

  21. Singh KS, Kumar S, Nigam K (2020) Impact of interface trap charges on analog/RF and linearity performances of dual-materialgate-oxide-stackdouble-gate TFET. IEEE Trans Device Mater Reliab 20(2):404–412. https://doi.org/10.1109/TDMR.2020.2984669

    Article  CAS  Google Scholar 

  22. Chen CY et al (2021) Doping profile engineered triple heterojunction TFETs with 12-nm body thickness. IEEE Trans Electron Devices 68(6):3104–3111. https://doi.org/10.1109/TED.2021.3075190

    Article  CAS  Google Scholar 

  23. Mojumder NN, Roy K (2009)Band-to-band tunneling ballistic nanowire FET: circuit-compatible device modeling and design of ultra-low-power digital circuits and memories. IEEE Trans Electron Devices 56(10):2193–2201

    Article  Google Scholar 

  24. (2013) TCAD Sentaurus User Guide, Synopsys Inc., Mountain View

  25. Biswas A, Dan SS, Royer CL, Grabinski W, Ionescu AM (2012) TCAD simulation of SOI TFETs and calibration of non-localband-to-band tunneling model. Microelectron Eng 98:334–337

    Article  CAS  Google Scholar 

  26. Tsormpatzoglou A, Dimitriadis CA, Clerc R, Rafhay Q, Pananakakis G, Ghibaudo G (2007) Semianalytical modeling of short-channel effects in Si and Ge Symmetrical double gate MOSFETs. IEEE Trans Electron Devices 54:1943–1951

    Article  CAS  Google Scholar 

  27. Hamid HAE, Guitart JR, Iniguez B (2007) Two dimensional Analytical threshold voltage and subthreshold swing Models of undoped symmetric Double-Gate MOSFETs. IEEE Trans Electron Devices 54:1402–1408

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding by Science & Engineering Research Board, Govt. of India (Sanction Reference. No. SRG/2019/000628).

Funding

This work is funded by Science & Engineering Research Board, Govt. of India (Sanction Reference. No. SRG/2019/000628).

Author information

Authors and Affiliations

Authors

Contributions

The work and manuscript is written by Rajesh Saha and Rupam Goswami. The grammatical corrections and Figures in this paper have done by Brinda Bhowmick and Srimanta Baishya.

Corresponding author

Correspondence to Rajesh Saha.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Disclosure of Potential Conflicts of Interest

The authors declare that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research Involving Human Participants And/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Not applicable. 

Ethics Approval and Consent for Participate

Not applicable as the manuscript does not contain any data from individual.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Goswami, R., Bhowmick, B. et al. Performance Evaluation of Epitaxial Layer Based Gate Modulated TFET (GM-TFET). Silicon 14, 5713–5718 (2022). https://doi.org/10.1007/s12633-021-01365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01365-0

Keywords

Navigation