Skip to main content
Log in

Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Zinc lead silicate glass system contains different amount of WO3 were fabricated using the classical melt-quench technique. The nature of the samples was investigated using X-ray diffraction. The ultrasonic velocities and elastic moduli were tested experimentally after that the results were compared by using the theoretical consideration. With increasing the WO3 content, decreasing the molar volume causes a decrease in the inter-ionic distance Ri. The FLUKA code were used to estimate the main attenuation considerations mass attenuation coefficients (MAC) and linear attenuation coefficients (LAC). The LAC increment from 0.728 cm-1 to 0.856 cm−1 as the WO3 concentration increment from 0 to 5 mol%, resulting in high shielding performance for G5. The dose rate at energy of 0.6 MeV with the G5 sample found to be declines from 2.35 × 107 R/h at 1 mm to 4.71 × 106 R/h at 4 mm. The values of mean free path (MFP) and the half value layer (HVL) are smaller than those of the traditional photon shields signifying that the fabricated samples (particularly G5) have interesting shielding characteristics to be used in applications involving x/gamma rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. Abdel Wahab EA, Shaaban KS, Yousef ES (2020) Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt Quant Electron 52:458. https://doi.org/10.1007/s11082-020-02575-3

    Article  CAS  Google Scholar 

  2. Shaaban K, Abdel Wahab EA, El-Maaref AA et al (2020) Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J Mater Sci Mater Electron 31:4986–4996. https://doi.org/10.1007/s10854-020-03065-8

    Article  CAS  Google Scholar 

  3. E.A. Abdel Wahab, M.S.I. Koubisy, M.I. Sayyed, K.A. Mahmoud, A.F. Zatsepin, Sayed A. Makhlouf, Shaaban, Kh.S. (2021) Novel borosilicate glass system: Na2B4O7-SiO2-MnO2 synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features, J Non-Crystalline Solids, \, 120509, https://doi.org/10.1016/j.jnoncrysol.2020.120509

    Article  CAS  Google Scholar 

  4. El-Rehim AFA, Zahran HY, Yahia IS et al (2020) Physical, radiation shielding and crystallization properties of Na2O-Bi2O3- MoO3-B2O3- SiO2 Fe2O3 glasses. Silicon. https://doi.org/10.1007/s12633-020-00827-1

  5. El-Maaref AA, Abdel Wahab EA, Shaaban KS, El-Agmy RM (2021) Enhancement of spectroscopic parameters of Er3+-doped cadmium lithium gadolinium silicate glasses as active medium for lasers and optical amplifiers in the NIR-region. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2021.106539

  6. Wahab EAA, Shaaban KS (2018) Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater Res Express 5(2):025207. https://doi.org/10.1088/2053-1591/aaaee8

    Article  CAS  Google Scholar 

  7. Shaaban KS, Yousef ES, Abdel Wahab EA et al (2020) Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20−x) Na2O. J Materi Eng Perform. https://doi.org/10.1007/s11665-020-04969-6

  8. Somaily HH, Shaaban KS, Makhlouf SA et al (2020) Comparative studies on polarizability, optical basicity and optical properties of Lead borosilicate modified with Titania. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01650-2

  9. Saudi HA, Abd-Allah WM, Shaaban KS (2020) Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J Mater Sci Mater Electron 31(9):6963–6976. https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  10. Shaaban KS, Wahab EAA, Shaaban ER et al (2020) Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with Titanate. J Elec Materi 49:2040–2049. https://doi.org/10.1007/s11664-019-07889-x

    Article  CAS  Google Scholar 

  11. Shaaban KS, Abo-Naf SM, Hassouna MEM (2019) Physical and structural properties of Lithium borate glasses containing MoO3. Silicon 11:2421–2428. https://doi.org/10.1007/s12633-016-9519-4

    Article  CAS  Google Scholar 

  12. Abdel Wahab EA, Shaaban KS, Elsaman R et al (2019) Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl Phys A Mater Sci Process 125:869. https://doi.org/10.1007/s00339-019-3166-8

    Article  CAS  Google Scholar 

  13. Abd-Allah WM, Saudi HA, Shaaban KS et al (2019) Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30-x) BaO-x ZnO glass system. Appl Phys A Mater Sci Process 125:275. https://doi.org/10.1007/s00339-019-2574-0

    Article  CAS  Google Scholar 

  14. Shaaban KS, Abo-naf SM, Abd Elnaeim AM, Hassouna MEM (2017) Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl Phys A Mater Sci Process 123:6. https://doi.org/10.1007/s00339-017-1052-9

    Article  CAS  Google Scholar 

  15. Shaaban KS, Koubisy MSI, Zahran HY et al (2020) Spectroscopic properties, electronic polarizability, and optical basicity of titanium–cadmium tellurite glasses doped with different amounts of lanthanum. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01640-4

  16. Shaaban KS, Yousef ES, Mahmoud SA et al (2020) Mechanical, structural and crystallization properties in Titanate doped phosphate glasses. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01574-x

  17. El-Maaref AA, Wahab EAA, Shaaban KS, Abdelawwad M, Koubisy MSI, Börcsök J, Yousef ES (2020) Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochimica Acta Part A: Mol Biomol Spectros, 118774. https://doi.org/10.1016/j.saa.2020.118774

  18. Shaaban KS, Zahran HY, Yahia IS et al (2020) Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl Phys A Mater Sci Process 126(10):804. https://doi.org/10.1007/s00339-020-03982-9

    Article  CAS  Google Scholar 

  19. El-Sharkawy RM, Shaaban KS, Elsaman R, Allam EA, El-Taher A, Mahmoud ME (2020) Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nano metal oxides. J Non-Crystalline Solids 528:119754. https://doi.org/10.1016/j.jnoncrysol.2019.119754

    Article  CAS  Google Scholar 

  20. El-Rehim AFA, Shaaban KS, Zahran HY et al (2020) Structural and mechanical properties of Lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01708-1

  21. Shaaban KS, Wahab EAA, Shaaban ER et al (2020) Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses. Opt Quant Electron 52:125. https://doi.org/10.1007/s11082-020-2191-3

    Article  CAS  Google Scholar 

  22. Shaaban KS, Yousef ES (2020) Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik - Int J Light Electron Optics 203:163976. https://doi.org/10.1016/j.ijleo.2019.163976

    Article  CAS  Google Scholar 

  23. El-Rehim AA, Zahran H, Yahia I et al (2020) Radiation, crystallization, and physical properties of cadmium borate glasses. Silicon. https://doi.org/10.1007/s12633-020-00798-3

  24. Abdel Wahab EA, El-Maaref AA, Shaaban KS, Börcsök J, Abdelawwad M (2020) Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Optical Mater, 110638. https://doi.org/10.1016/j.optmat.2020.110638

  25. AlBuriahi MS, Hegazy HH, Alresheedi F, Olarinoye IO, Algarni H, Tekin HO, Saudi HA (2020) Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.10.168

  26. Abouhaswa AS, Mhareb MHA, Alalawi A, Al-Buriahi MS (2020) Physical, structural, optical, and radiation shielding properties of B2O3-20Bi2O3-20Na2O2-Sb2O3 glasses: role of Sb2O3. J Non-Crystalline Solids 543:120130. https://doi.org/10.1016/j.jnoncrysol.2020.120130

    Article  CAS  Google Scholar 

  27. Naseer KA, Marimuthu K, Al-Buriahi MS, Alalawi A, Tekin HO (2020) Influence of Bi2O3 concentration on barium-telluro-borate glasses: physical, structural, and radiation-shielding properties. Ceram Int 47(1):329–340. https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  CAS  Google Scholar 

  28. Abouhaswa AS, Al-Buriahi MS, Chalermpon M et al (2020) Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl Phys A Mater Sci Process 126:78. https://doi.org/10.1007/s00339-019-3264-7

    Article  CAS  Google Scholar 

  29. Gokhan K, Agawany FIEL, Ilik BO, Mahmoud KA, Erkan I, Rammah YS (2021) Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy. Optical Mater 112:110757. https://doi.org/10.1016/j.optmat.2020.110757

    Article  CAS  Google Scholar 

  30. Stalin S, Gaikwad DK, Al-Buriahi MS, Srinivasu C, Ahmed SA, Tekin HO, Rahman S (2020) Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.10.109

  31. ElBatal HA, Abdelghany AM, ElBatal FH, EzzElDin FM (2012) Gamma rays interactions with WO3-doped lead borate glasses. 134(1), 542 548. doi: https://doi.org/10.1016/j.matchemphys.2012.03.032

  32. Kaur A, Khanna A, Sathe VG, Gonzalez F, Ortiz B (2013) Optical, thermal, and structural properties of Nb2O5–TeO2 and WO3–TeO2 glasses. Phase Transit 86(6):598–619. https://doi.org/10.1080/01411594.2012.727998

    Article  CAS  Google Scholar 

  33. ElBatal FH, Marzouk SY (2009) Interactions of gamma rays with tungsten-doped lead phosphate glasses. J Mater Sci 44:3061–3071. https://doi.org/10.1007/s10853-009-3406-y

    Article  CAS  Google Scholar 

  34. Fayad AM, Ouis MA, ElBatal FH et al (2018) Shielding behavior of gamma-irradiated MoO3 or WO3-doped Lead phosphate glasses assessed by optical and FT infrared absorption spectral measurements. Silicon 10:1873–1879. https://doi.org/10.1007/s12633-017-9692-0

    Article  CAS  Google Scholar 

  35. Alomairy S, Al-Buriahi MS, Abdel Wahab EA, Sriwunkum C, Shaaban K (2021) Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int 47:17322–17330. https://doi.org/10.1016/j.ceramint.2021.03.045

    Article  CAS  Google Scholar 

  36. Makishima A, Mackenzie JD (1973) Direct calculation of Young's modulus of glass. J Non-Crystalline Solids 12(1):35–45. https://doi.org/10.1016/0022-3093(73)90053-7

    Article  CAS  Google Scholar 

  37. Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus, and Poisson's ratio of glass. J Non-crystalline Solids 17(2):147–157. https://doi.org/10.1016/0022-3093(75)90047-2

    Article  CAS  Google Scholar 

  38. Battistoni G, Cerutti F, Fasso A, Ferrari A, Muraro S, Ranft J, Roesler S, Sala PR (2007) The FLUKA code: Description and benchmarking." In AIP Conference proceedings, vol. 896, no. 1, pp. 31–49. American Institute of Physics

  39. AlBuriahi MS, Hegazy HH, Faisal A, Olarinoye IO, Algarni H, Tekin HO, Saudi HA (2020) Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.10.168

  40. Stalin S, Gaikwad DK, Al-Buriahi MS, Srinivasu C, Ahmed SA, Tekin HO, Rahman S (2020) Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.10.109

  41. Al-Buriahi MS, Alajerami YSM, Abouhaswa AS, Alalawi A, Nutaro T, Tonguc B (2020) Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J Non-Crystalline Solids 544:120171. https://doi.org/10.1016/j.jnoncrysol.2020.120171

    Article  CAS  Google Scholar 

  42. Naseer KA, Marimuthu K, Al-Buriahi MS, Alalawi A, Tekin HO (2020) Influence of Bi2O3 concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties. Ceram Int 47(1):329–340. https://doi.org/10.1016/j.ceramint.2020.08.138

    Article  CAS  Google Scholar 

  43. Boukhris I, Imen K, Al-Buriahi MS, Amani A, Abouhaswa AS, Tonguc B (2020) Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram Int 46(15):24435–24442. https://doi.org/10.1016/j.ceramint.2020.06.226

    Article  CAS  Google Scholar 

  44. Alothman MA, Alrowaili ZA, Alzahrani JS, Wahab EAA, Olarinoye IO, Sriwunkum C, Shaaban KS, Al-Buriahi MS (2021) Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J Alloys Compounds 882:160625. https://doi.org/10.1016/j.jallcom.2021.160625

    Article  CAS  Google Scholar 

  45. Al-Buriahi MS, Singh VP, Alalawi A, Sriwunkum C, Tonguc BT (2020) Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.03.091

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Groups Program under grant number R.G.P.2/179/42. This work was also supported by Taif University Researchers Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Funding Statement

There are currently no Funding Sources on the list.

Author information

Authors and Affiliations

Authors

Contributions

Sultan Alomairy, Z.A. Alrowaili, and Imen Kebaili, editing helping in reviewers’ responses. E.A. Abdel Wahab, C. Mutuwong, M.S. Al-Buriahi, and Kh. S. Shaaban, Conceptualization, Methodology, Writing Reviewing Discussion and Editing helping in reviewers’ responses.

Corresponding author

Correspondence to Kh. S. Shaaban.

Ethics declarations

The manuscript has not been published.

Consent to Participate

The authors consent to participate.

Consent for Publication

The author’s consent for publication.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomairy, S., Alrowaili, Z.A., Kebaili, I. et al. Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding Applications. Silicon 14, 5661–5671 (2022). https://doi.org/10.1007/s12633-021-01347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01347-2

Keywords

Navigation