Skip to main content
Log in

Determination of the Fracture Toughness of Glasses via Scratch Tests with a Vickers Indenter

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Fracture toughness is an important index in safety evaluation for materials and structures. Its convenient and accurate characterization has attracted extensive attention. For small specimens, traditional testing methods of fracture toughness are not suitable due to limitations in sample size and shape. In this work, a new formula is proposed to determine the fracture toughness of glasses using scratch tests with a Vickers indenter based on dimensional analysis and finite element analysis. Fracture toughness of glasses could be calculated with elastic modulus, crack depth of scratched materials and normal force applied during the scratch tests. The effects of plastic deformation and interfacial friction between the Vickers indenter and scratched materials are considered, and the crack shape is consistent with experimental observations. The proposed formula is verified by comparing the fracture toughness of soda-lime and borosilicate glasses obtained from scratch tests with those obtained via indentation tests. This work provides an alternative method to determine the fracture toughness of glass materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cook R, Pharr G. Direct observation and analysis of indentation cracking in glasses and ceramics. J Am Ceram Soc. 1990;4:787–817. https://doi.org/10.1111/j.1151-2916.1990.tb05119.x.

    Article  Google Scholar 

  2. Anderson TL. Fracture mechanics: fundamentals and applications. Bona Raton: CRC Press; 2001.

    MATH  Google Scholar 

  3. Bao C, Cai L, Shi K, et al. Improved normalization method for ductile fracture toughness determination based on dimensionless load separation principle. Acta Mech Solida Sin. 2015;25(2):168–81. https://doi.org/10.1016/S0894-9166(15)30005-7.

    Article  Google Scholar 

  4. Hong SH, Kim HY, Lee JR. Crack propagation behaviour during three-point bending of polymer matrix composite/Al2O3/polymer matrix composite laminated composites. Mat Sci Eng A - Struct. 1995;194:157–63. https://doi.org/10.1016/0921-5093(94)09677-5.

    Article  Google Scholar 

  5. To T, Célarié F, Roux-Langlois C, et al. Fracture toughness, fracture energy and slow crack growth of glass as investigated by the Single-Edge Precracked Beam (SEPB) and Chevron-Notched Beam (CNB) methods. Acta Mater. 2018;146:1–11. https://doi.org/10.1016/j.actamat.2017.11.056.

    Article  Google Scholar 

  6. Bao C, Cai LX. Investigation on compliance rotation correction for compact tensile specimen in unloading compliance method. Acta Mech Solida Sin. 2011;24(2):144–52. https://doi.org/10.1016/S0894-9166(11)60016-5.

    Article  Google Scholar 

  7. Lawn B, Wilshaw R. Indentation fracture: principles and applications. J Mat Sci. 1975;10:1049–81.

    Article  Google Scholar 

  8. Malzbender J, den Toonder JMJ, Balkenende AR, et al. Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol-gel coatings on glass. Mat Sci Eng R. 2002;36:47–103.

    Article  Google Scholar 

  9. Zhao MH, Yang F, Zhang TY. Delamination buckling in the microwedge indentation of a thin film on an elastically deformable substrate. Mech Mater. 2007;39:881–92. https://doi.org/10.1016/j.mechmat.2007.03.003.

    Article  Google Scholar 

  10. Quinn GD, Bradt RC. On the Vickers indentation fracture toughness test. J Am Ceram Soc. 2007;90:673–80. https://doi.org/10.1111/j.1551-2916.2006.01482.x.

    Article  Google Scholar 

  11. Rickhey F, Marimuthu KP, Lee JH, et al. Evaluation of the fracture toughness of brittle hardening materials by Vickers indentation. Eng Fract Mech. 2015;148:134–44. https://doi.org/10.1016/j.engfracmech.2015.09.028.

    Article  Google Scholar 

  12. Ma DJ, Sun L, Wang LZ, et al. A new formula for evaluating indentation toughness in ceramics. Exp Mech. 2018;58:177–82. https://doi.org/10.1007/s11340-017-0325-8.

    Article  Google Scholar 

  13. Evans AG, Charles EA. Fracture toughness determinations by indentation. J Am Ceram Soc. 1976;59:371–2. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x.

    Article  Google Scholar 

  14. Lawn BR, Evans AG, Marshall DB. Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc. 1980;63:574–81. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x.

    Article  Google Scholar 

  15. Feng Y, Zhang T, Yang R. A work approach to determine Vickers indentation fracture toughness. J Am Ceram Soc. 2011;94:332–5. https://doi.org/10.1111/j.1551-2916.2010.04289.x.

    Article  Google Scholar 

  16. Feng Y, Zhang T. Determination of fracture toughness of brittle materials by indentation. Acta Mech Solida Sin. 2015;28(3):221–34. https://doi.org/10.1016/S0894-9166(15)30010-0.

    Article  Google Scholar 

  17. Ostojic P, Mcpherson R. A review of indentation fracture theory: its development, principles and limitations. Int J Fract. 1987;33(4):297–312. https://doi.org/10.1007/BF00044418.

    Article  Google Scholar 

  18. Jiang H, Browning R, Sue HJ. Understanding of scratch-induced damage mechanisms in polymers. Polymer. 2009;50:4056–65. https://doi.org/10.1016/j.polymer.2009.06.061.

    Article  Google Scholar 

  19. Jiang H, Zhang J, Yang Z, et al. Modeling of competition between shear yielding and crazing in amorphous polymers’ scratch. Int J Solids Struct. 2017;124:215–28. https://doi.org/10.1016/j.ijsolstr.2017.06.033.

    Article  Google Scholar 

  20. Zhang J, Jiang H, Jiang C, et al. Experimental and numerical investigations of evaluation criteria and material parameters’ coupling effect on polypropylene scratch. Polym Eng Sci. 2018;58:118–22. https://doi.org/10.1002/pen.24538.

    Article  Google Scholar 

  21. Bull SJ, Berasetegui EG. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int. 2006;39:99–114. https://doi.org/10.1016/j.triboint.2005.04.013.

    Article  Google Scholar 

  22. Holmberg K, Laukkanen A, Ronkainen H, et al. A model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear. 2003;254:278–91. https://doi.org/10.1016/S0043-1648(02)00297-1.

    Article  Google Scholar 

  23. Blackman BRK, Hoult T, Patel Y, et al. Steady-state scratch testing of polymers. Polym Test. 2016;49:38–45. https://doi.org/10.1016/j.polymertesting.2015.11.002.

    Article  Google Scholar 

  24. Wakeel SA, Hubler MH. Introducing heterogeneity into the micro-scratch test fracture toughness relation for brittle particle composites. Exp Mech. 2018;58:1237–47. https://doi.org/10.1007/s11340-018-0408-1.

    Article  Google Scholar 

  25. Subhash G, Loukus JE, Pandit SM. Application of data dependent systems approach for evaluation of fracture modes during a single-grit scratching. Mech Mater. 2002;34:25–42. https://doi.org/10.1016/S0167-6636(01)00083-7.

    Article  Google Scholar 

  26. Cook RF. Fracture mechanics of sharp scratch strength of polycrystalline alumina. J Am Ceram Soc. 2017;100:1146–60. https://doi.org/10.1111/jace.14634.

    Article  Google Scholar 

  27. Liu HT, Zhao MH, Zhang JW. Fracture properties of surface modification layers via a modified bi-layer beam model. J Mech. 2019;35:499–511. https://doi.org/10.1017/jmech.2018.36.

    Article  Google Scholar 

  28. Akono A, Reis PM, Ulm F. Scratching as a fracture process: from butter to steel. Phys Rev Lett. 2011;106:20430220. https://doi.org/10.1103/PhysRevLett.106.204302.

    Article  Google Scholar 

  29. Akono A, Ulm F. Scratch test model for the determination of fracture toughness. Eng Fract Mech. 2011;78:334–42. https://doi.org/10.1016/j.engfracmech.2010.09.017.

    Article  Google Scholar 

  30. Lin J, Zhou Y. Can scratch tests give fracture toughness? Eng Fract Mech. 2013;109:161–8. https://doi.org/10.1016/j.engfracmech.2013.06.002.

    Article  Google Scholar 

  31. Liu M, Yang S, Gao C. Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading. Polym Test. 2020;90:106643. https://doi.org/10.1016/j.polymertesting.2020.106643.

    Article  Google Scholar 

  32. Zhang D, Sun Y, Gao C, Liu M. Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter. Wear. 2020;444–445:203158. https://doi.org/10.1016/j.wear.2019.203158.

    Article  Google Scholar 

  33. Liu HT, Zhao MH, Lu CS, et al. Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests. Ceram Int. 2020;46:6060–6. https://doi.org/10.1016/j.ceramint.2019.11.065.

    Article  Google Scholar 

  34. Wang W, Yao P, Wang J, et al. Elastic stress field model and micro-crack evolution for isotropic brittle materials during single grit scratching. Ceram Int. 2017;43:10726–36. https://doi.org/10.1016/j.ceramint.2017.05.054.

    Article  Google Scholar 

  35. Sani G, Limbach R, Dellith J, et al. Surface damage resistance and yielding of chemically strengthened silicate glasses: from normal indentation to scratch loading. J Am Ceram Soc. 2021. https://doi.org/10.1111/jace.17758.

    Article  Google Scholar 

  36. Matsuoka J, Guo D, Yoshida S. Cross-section morphology of the scratch-induced cracks in Soda-lime-silica glass. Front Mater. 2017;4:8. https://doi.org/10.3389/fmats.2017.00008.

    Article  Google Scholar 

  37. Shah RC, Kobayashi AS. Effect of poisson’s ratio on stress intensity magnification factor. Int J Fract. 1973;9:360–1. https://doi.org/10.1007/BF00049223.

    Article  Google Scholar 

  38. Konda N, Erdogan F. The mixed mode crack problem in a nonhomogeneous elastic medium. Eng Fract Mech. 1994;47:533–45. https://doi.org/10.1016/0013-7944(94)90253-4.

    Article  Google Scholar 

  39. Lacroix R, Kermouche G, Teisseire J, et al. Plastic deformation and residual stresses in amorphous silica pillars under uniaxial loading. Acta Mater. 2012;60:5555–66. https://doi.org/10.1016/j.actamat.2012.07.016.

    Article  Google Scholar 

  40. Lin JS, Zhou Y. Rebuttal: shallow wide groove scratch tests do not give fracture toughness. Eng Fract Mech. 2015;133:211–22. https://doi.org/10.1016/j.engfracmech.2014.10.030.

    Article  Google Scholar 

  41. Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–8.

    Article  Google Scholar 

  42. Iwata K, Tonegawa A, Nishi Y. Reduce brittleness of borosilicate glass by electron beam irradiation. J Jpn I Met. 2005;69:380–4. https://doi.org/10.2320/jinstmet.69.380.

    Article  Google Scholar 

  43. Gong J, Chen Y, Li C. Statistical analysis of fracture toughness of soda-lime glass determined by indentation. J Non-Cryst Solids. 2001;279:219–23. https://doi.org/10.1016/S0022-3093(00)00418-X.

    Article  Google Scholar 

  44. Mueller MG, Pejchal V, Zagar G, et al. Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater. 2015;85:385–95. https://doi.org/10.1016/j.actamat.2014.12.016.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from National Natural Science Foundation of China (Nos. 12072324 and U1804254) and Natural Science Foundation of Henan Province for Excellent Young Scholars (212300410087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Zhang or Minghao Zhao.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, J., Zhao, M. et al. Determination of the Fracture Toughness of Glasses via Scratch Tests with a Vickers Indenter. Acta Mech. Solida Sin. 35, 129–138 (2022). https://doi.org/10.1007/s10338-021-00264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00264-6

Keywords

Navigation