Skip to main content

Advertisement

Log in

High Pressure Thermal Conductivity Measurements of Ternary (Methane + Propane + Heptane) Mixtures with a Transient Hot-Wire Apparatus

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The prediction of thermophysical properties for hydrocarbon mixtures at high pressures, and conditions near the phase boundary or critical point is challenging. However, natural gas processing applications have an increasing need for reliable property predictions at such conditions. In this work, thermal conductivity measurements of three ternary mixtures (methane + propane with heptane at concentration up to 15 mol%) were carried out with a transient hot-wire apparatus. Measurements of the three ternary mixtures were conducted over the temperature range from (199.1 to 424.2) K and the pressure range between (10.41 and 31.55) MPa at single phase conditions with a relative combined expanded uncertainty (k = 2) between 0.015 and 0.056. The measured values were compared to predictions made with the extended corresponding states (ECS) model and SUPERTRAPP model implemented in the software packages REFPROP 10 and MultiFlash 6.2, respectively. The relative deviations of the measured thermal conductivities from the model predictions were (− 5.7 to + 2.4) % for the ECS model and (− 21.1 to − 0.6) % for the SUPERTRAPP model. This indicates the latter, older model should not be used to estimate natural gas thermal conductivities, particularly at high pressure conditions, while the ECS model is capable of representing the data within their uncertainty with no parameter tuning required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Arami-Niya, X. Xiao, S. Al Ghafri, F. Jiao, M. Khamphasith, E.S. Pouya, M. Seyyedsadaghiani, X. Yang, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, Int. J. Refrig. (2020). https://doi.org/10.1016/j.ijrefrig.2020.05.009

    Article  Google Scholar 

  2. S.Z.S. Al Ghafri, T.J. Hughes, F. Perez, C.J. Baker, A. Siahvashi, A. Karimi, A. Arami-Niya, E.F. May, Fluid Phase Equilib. 518, 112620 (2020). https://doi.org/10.1016/j.fluid.2020.112620

    Article  Google Scholar 

  3. S.Z.S. Al Ghafri, J.P.M. Trusler, J. Supercrit. Fluids 145, 1 (2019). https://doi.org/10.1016/j.supflu.2018.11.012

    Article  Google Scholar 

  4. M. Akhfash, S.Z.S. Al Ghafri, D. Rowland, T.J. Hughes, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Eng. Data (2019). https://doi.org/10.1021/acs.jced.8b01039

    Article  Google Scholar 

  5. L.F.S. Souza, S.Z.S. Al Ghafri, J.P.M. Trusler, J. Chem. Thermodyn. 126, 63 (2018). https://doi.org/10.1016/j.jct.2018.06.022

    Article  Google Scholar 

  6. Y. Sanchez-Vicente, W.J. Tay, S.Z. Al Ghafri, J.P.M. Trusler, Appl. Energy 220, 629 (2018). https://doi.org/10.1016/j.apenergy.2018.03.136

    Article  Google Scholar 

  7. F.F. Czubinski, S.Z.S. Al Ghafri, T.J. Hughes, P.L. Stanwix, E.F. May, Fuel 225, 563 (2018). https://doi.org/10.1016/j.fuel.2018.03.183

    Article  Google Scholar 

  8. S.Z.S. Al Ghafri, F.F. Czubinski, E.F. May, Fuel 231, 187 (2018). https://doi.org/10.1016/j.fuel.2018.05.087

    Article  Google Scholar 

  9. A. Siahvashi, S.Z.S. Al Ghafri, J.H. Oakley, T.J. Hughes, B.F. Graham, E.F. May, J. Chem. Eng. Data 62, 2896 (2017). https://doi.org/10.1021/acs.jced.7b00171

    Article  Google Scholar 

  10. S.Z.S. Al Ghafri, G.C. Maitland, J.P.M. Trusler, J. Chem. Eng. Data 62, 2826 (2017). https://doi.org/10.1021/acs.jced.7b00145

    Article  Google Scholar 

  11. S.K. Mylona, T.J. Hughes, A.A. Saeed, D. Rowland, J. Park, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Thermodyn. 133, 135 (2019). https://doi.org/10.1016/j.jct.2019.01.028

    Article  Google Scholar 

  12. S.K. Mylona, X. Yang, T.J. Hughes, A.C. White, L. McElroy, D. Kim, S. Al Ghafri, P.L. Stanwix, Y.H. Sohn, Y. Seo, E.F. May, J. Chem. Eng. Data 65, 906 (2020). https://doi.org/10.1021/acs.jced.9b01087

    Article  Google Scholar 

  13. D. Kim, X. Yang, A. Arami-Niya, D. Rowland, X. Xiao, S. Al Ghafri, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, J. Chem. Thermodyn. 151, 106248 (2020)

    Article  Google Scholar 

  14. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 61, 3286 (2016)

    Article  Google Scholar 

  15. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 62, 2659 (2017)

    Article  Google Scholar 

  16. G.J. Tertsinidou, C.M. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data 62, 491 (2016)

    Article  Google Scholar 

  17. K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 37, 78 (2016). https://doi.org/10.1007/s10765-016-2083-8

    Article  ADS  Google Scholar 

  18. X. Wang, S. Qiu, J. Wu, I.M. Abdulagatov, J. Chem. Eng. Data 65, 1993 (2020)

    Article  Google Scholar 

  19. X. Li, J. Wu, Q. Dang, J. Chem. Eng. Data 55, 1241 (2010)

    Article  Google Scholar 

  20. W.A. Wakeham, A. Nagashima (eds.), Experimental Thermodynamics. Vol. III, Measurement of the Transport Properties of Fluids (Blackwell Scientific Publications, London, 1991)

    Google Scholar 

  21. M.J. Assael, K.D. Antoniadis, W.A. Wakeham, Int. J. Thermophys. 31, 1051 (2010). https://doi.org/10.1007/s10765-010-0814-9

    Article  ADS  Google Scholar 

  22. R.A. Perkins, H.M. Roder, C.A. Nieto de Castro, J. Res. Natl. Inst. Stand. Technol. 96, 247 (1991)

    Article  Google Scholar 

  23. K.N. Marsh, R.A. Perkins, M.L. Ramires, J. Chem. Eng. Data 47, 932 (2002)

    Article  Google Scholar 

  24. J. Kestin, W.A. Wakeham, Phys. A 92, 102 (1978)

    Article  Google Scholar 

  25. J.J. Healy, J.J. de Groot, J. Kestin, Physica B+C 82, 392 (1976)

    Article  ADS  Google Scholar 

  26. S.Z. Al Ghafri, F. Jiao, T.J. Hughes, A. Arami-Niya, X. Yang, A. Siahvashi, A. Karimi, E.F. May, Fuel 304, 121395 (2021)

    Article  Google Scholar 

  27. S.Z. Al Ghafri, D. Rowland, M. Akhfash, A. Arami-Niya, M. Khamphasith, X. Xiao, T. Tsuji, Y. Tanaka, Y. Seiki, E.F. May, Int. J. Refriger. 98, 249 (2019)

    Article  Google Scholar 

  28. O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032 (2012)

    Article  Google Scholar 

  29. ISO/IEC Guide 98: Uncertainty of measurement—part 3: Guide to the expression of uncertainty in measurement (GUM: 1995) (2008)

  30. M. Frenkel, R.D. Chirico, V. Diky, X. Yan, Q. Dong, C. Muzny, J. Chem. Inf. Model. 45, 816 (2005)

    Article  Google Scholar 

  31. D.G. Friend, J.F. Ely, H. Ingham, J. Phys. Chem. Ref. Data 18, 583 (1989)

    Article  ADS  Google Scholar 

  32. E.W. Lemmon, R.T. Jacobsen, Int. J. Thermophys. 25, 21 (2004)

    Article  ADS  Google Scholar 

  33. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden. (2018). http://www.nist.gov/srd/nist23.cfm.

  34. C. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999)

    Article  ADS  Google Scholar 

  35. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)

    Article  ADS  Google Scholar 

  36. J.C. Chichester, M.L. Huber, Documentation and assessment of the transport property model for mixtures implemented in NIST REFPROP (Version 8.0). National Institute of Standards and Technology (2008)

  37. M.L. Huber, H.J.M. Hanley, Transport Prop. The Corresponding-States Principle: Dense fluids, ed. by J. Millat, J.H. Dymond, C.A. Nieto de Castro. Transport Properties of Fluids: Their Correlation, Prediction and Estimation, vol 285 (Cambridge University Press, New York, 1996), pp. 283−295

  38. KBC InfoChem, Advanced Technologies PLC Multiflash, vol. 6 (KBC InfoChem, Doha, 2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported financially by the GPA Midstream Association and the Australian Research Council through LP130101018 and IC150100019. We thank Amina Saeed for assisting with the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric F. May.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Al Ghafri, S.Z.S., Yang, X. et al. High Pressure Thermal Conductivity Measurements of Ternary (Methane + Propane + Heptane) Mixtures with a Transient Hot-Wire Apparatus. Int J Thermophys 42, 164 (2021). https://doi.org/10.1007/s10765-021-02907-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02907-9

Keywords

Navigation