Skip to main content
Log in

Comparison and Möbius Quasi-invariance Properties of Ibragimov’s Metric

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

For a domain \( D \subsetneq {\mathbb {R}}^{n} \), Ibragimov’s metric is defined as

$$\begin{aligned} u_{D}(x,y) = 2\, \log \frac{|x-y|+\max \{d(x),d(y)\}}{\sqrt{d(x)\,d(y)}}, \quad \quad x,y \in D, \end{aligned}$$

where d(x) denotes the Euclidean distance from x to the boundary of D. In this paper, we compare Ibragimov’s metric with the classical hyperbolic metric in the unit ball or in the upper half space, and prove sharp comparison inequalities between Ibragimov’s metric and some hyperbolic type metrics. We also obtain several sharp distortion inequalities for Ibragimov’s metric under some families of Möbius transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  2. Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1983)

    Book  Google Scholar 

  3. Beardon, A.F.: The Apollonian metric of a domain in \({\mathbb{R}}^{n}\). Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), 91–108. Springer, New York (1998)

  4. Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal mappings. Ann. Acad. Sci. Fenn. Math. 40, 683–709 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172–199 (1976)

    Article  MathSciNet  Google Scholar 

  6. Gehring, F.W., Osgood, B.G.: Uniform domains and the quasihyperbolic metric. J. Anal. Math. 36, 50–74 (1979)

    Article  MathSciNet  Google Scholar 

  7. Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47, 1121–1148 (2017)

    Article  MathSciNet  Google Scholar 

  8. Hästö, P., Lindén, H.: Isometries of the half-Apollonian metric. Complex Var. Theory Appl. 49, 405–415 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Hästö, P.: Gromov hyperbolicity of the \(j_{G}\) and \(\tilde{j}_{G}\) metrics. Proc. Am. Math. Soc. 134, 1137–1142 (2006)

    Article  Google Scholar 

  10. Ibragimov, Z.: The Cassinian metric of a domain in \(\overline{{\mathbb{R}}}^n\). Uzbek. Mat. Zh., 53–67 (2009)

  11. Ibragimov, Z.: Hyperbolizing metric spaces. Proc. Am. Math. Soc. 139, 4401–4407 (2011)

    Article  MathSciNet  Google Scholar 

  12. Ibragimov, Z.: Möbius invariant Cassinian metric. Bull. Malays. Math. Sci. Soc. 42, 1349–1367 (2019)

    Article  MathSciNet  Google Scholar 

  13. Ibragimov, Z., Mohapatra, M.R., Sahoo, S.K., Zhang, X.: Geometry of the Cassinian metric and its inner metric. Bull. Malays. Math. Sci. Soc. 40, 361–372 (2017)

    Article  MathSciNet  Google Scholar 

  14. Klén, R., Lindén, H., Vuorinen, M., Wang, G.: The visual angle metric and Möbius transformations. Comput. Methods Funct. Theory 14, 577–608 (2014)

    Article  MathSciNet  Google Scholar 

  15. Mohapatra, M.R., Sahoo, S.K.: A Gromov hyperbolic metric vs the hyperbolic and other related metrics. Comput. Methods Funct. Theory 18, 473–493 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mohapatra, M.R., Sahoo, S.K.: Mapping properties of a scale invariant Cassinian metric and a Gromov hyperbolic metric. Bull. Aust. Math. Soc. 97, 141–152 (2018)

    Article  MathSciNet  Google Scholar 

  17. Seittenranta, P.: Möbius-invariant metrics. Math. Proc. Camb. Philos. Soc. 125, 511–533 (1999)

    Article  MathSciNet  Google Scholar 

  18. Simić, S., Vuorinen, M., Wang, G.: Sharp Lipschitz constants for the distance ratio metric. Math. Scand. 116, 86–103 (2015)

    Article  MathSciNet  Google Scholar 

  19. Vuorinen, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988)

  20. Wang, G., Vuorinen, M.: The visual angle metric and quasiregular maps. Proc. Am. Math. Soc. 144, 4899–4912 (2016)

    Article  MathSciNet  Google Scholar 

  21. Xu, X., Wang, G.: Sharp inequalities for the scale invariant Cassinian metric. J. Zhejiang Sci. Tech. Univ. 41, 829–834 (2019)

    Google Scholar 

  22. Zhang, X.: Comparison between a Gromov hyperbolic metric and the hyperbolic metric. Comput. Methods Funct. Theory 18, 717–722 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partly supported by National Natural Science Foundation of China (NNSFC) under Grant No.11771400 and No.11601485, and Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No.16062023 -Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gendi Wang.

Additional information

Communicated by Pekka Koskela.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, G. & Zhang, X. Comparison and Möbius Quasi-invariance Properties of Ibragimov’s Metric. Comput. Methods Funct. Theory 22, 609–627 (2022). https://doi.org/10.1007/s40315-021-00414-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-021-00414-4

Keywords

Mathematics Subject Classification

Navigation