Skip to main content

Advertisement

Log in

New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Phloem fibers from the bark of Pteroceltis tatarinowii are the main raw material for Chinese traditional handmade paper, Xuan zhi. Research on this fiber will contribute to unveil the scientific connotation contained in empirical records, and promote the inheritance of Chinese culture. In this study, the influence of age (5-, 12-, 29- year-old) on the anatomical, morphological, cellulose, and mechanical characteristics of phloem fibers were investigated. The microscopy showed that phloem fibers of P. tatarinowii contained the gelatinous layer. The phloem fibers were thin and long, and microfibril angles were small (4.2° ~ 6.9°). The highest total carbohydrate content of 38.0% was found in the 5-year-old bark, of which glucose accounted for 73.3%. The crystallinity of phloem fiber was decreased from 70.7 to 57.5 with the growing age. Due to a tighter cellulose structure, the 5-year-old phloem fibers exhibited a higher indentation modulus (10.8 ~20.5 GPa) than the others (6.1~15.0 GPa).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97:725–730

    Article  CAS  PubMed  Google Scholar 

  • Ahn K, Zaccaron S, Rosenau T, Potthast A (2019) How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses: Cupri-Ethylenediamine. Biomacromol 20:4117–4125

    Article  CAS  Google Scholar 

  • Angyalossy V, Pace RM, Evert FR, Marcati RC, Oskolski AA, Terrazas T, Kotina E, Lens F, Mazzoni-Viveiros CS, Angeles G, Machado RS, Crivellaro A, Rao SK, Junikka L, Nikolaeva N, Baas P (2016) IAWA list of microscopic bark features. IAWA J 37:517–615

    Article  Google Scholar 

  • Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr Polym 88:1258–1263

    Article  CAS  Google Scholar 

  • Becker M, Ahn K, Bacher M, Xu C, Sundberg A, Willför S, Rosenau T, Potthast A (2021) Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science. Cellulose.

  • Bergfjord C, Holst B (2010) A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jute. Ultramicroscopy 110:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Luo J, Wang R, Zhou X, Ni S, Shi R, Fang G, Dai H (2019) Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain Chem Eng 7:20022–20031

    Article  CAS  Google Scholar 

  • Burgert I, Gierlinger N, Zimmermann T (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: structural and chemical characterization. Holzforschung 59:240–246

    Article  CAS  Google Scholar 

  • Bünder A, Sundman O, Mahboubi A, Persson S, Mansfield DS, Markus Rüggeberg M, Niittylä T (2020) CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Plant J 103:1858–1868

    Article  PubMed  CAS  Google Scholar 

  • Cardoso S, Quilhó T, Pereira H (2018) Influence of cambial age on the bark structure of Douglas-fir. Wood Sci Technol 53:191–210

    Article  CAS  Google Scholar 

  • Carla L, Helena P (2017) Cork-containing barks - a review. Front Mater 3:63–81

    Google Scholar 

  • Chernova TE, Mikshina PV, Salnikov VV, Ibragimova NN, Sautkina OV, Gorshkova TA (2018) Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L.). Ind Crops Prod 117:97–109

    Article  CAS  Google Scholar 

  • Dilamian M, Noroozi B (2019) A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose 26:5831–5849

    Article  CAS  Google Scholar 

  • Donaldson LA (2008) Microfibril angle: measurement, variation and relationships - a review. IAWA J 29:345–386

    Article  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  • ES Iso Standard (2012) Pulps - Determination of limiting viscosity number in cupriethylenediamine (CED) solution. ES ISO 5351:2012

    Google Scholar 

  • Felhofer M, Bock P, Singh A, Prats MB, Zirbs R, Gierlinger N (2020) Wood deformation leads to rearrangement of molecules at the nanoscale. Nano Lett 20:2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French A, Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708

    Article  CAS  PubMed  Google Scholar 

  • Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. J Spectrosc 21:69–89

    Article  CAS  Google Scholar 

  • Gorshkova T, Gurjanov O, Mikshina P, Ibragimova N, Mokshina N, Salnikov V, Chemikosova S (2010) Specific type of secondary cell wall formed by plant fibers. Russ J Plant Physiol 57:328–341

    Article  CAS  Google Scholar 

  • Goudenhooft C, Siniscalco D, Arnould O, Bourmaud A, Sire O, Gorshkova T, Baley C (2108) Investigation of the mechanical properties of flax cell walls during plant development: The relation between performance and cell wall structure. Fibers 6:6–14.

  • Haugan E, Holst B (2013) Determining the fibrillar orientation of bast fibres with polarized light microscopy: the modified Herzog test (red plate test) explained. J Microsc 252:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibragimova N, Mokshina N, Ageeva M, Gurjanov O, Mikshina P (2020) Rearrangement of the cellulose-enriched cell wall in flax phloem fibers over the course of the gravitropic reaction. Int J Mol Sci 21:5322–5344

    Article  CAS  PubMed Central  Google Scholar 

  • Jebadurai SG, Raj RE, Sreenivasan VS, Binoj JS (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydr Polym 207:675–683

    Article  CAS  PubMed  Google Scholar 

  • Ji Z, Ma JF, Zhang ZH, Xu F, Sun RC (2013) Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind Crops Prod 47:212–217

    Article  CAS  Google Scholar 

  • Jin K, Liu X, Wang K, Jiang Z, Tian G, Yang S, Ma J (2018) Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana. Planta 248:849–858

    Article  CAS  PubMed  Google Scholar 

  • Kathirselvam M, Kumaravela A, Arthanarieswarana VP, Saravanakumarb SS (2019) Assessment of cellulose in barkfibers of Thespesia populnea influence of stem maturity on fiber characterization. Carbohydr Polym 212:439–449

    Article  CAS  PubMed  Google Scholar 

  • Leney L (1981) A technique for measuring fibril angle using polarized light. Wood Fiber Sci 13:13–16

    Google Scholar 

  • Lima JT, Ribeiro AO, Narciso CRP (2014) Microfibril angle of Eucalyptus grandis wood in relation to the cambial age. Maderas: Ciencia y tecnología 16:487–494.

  • Luo Y, Cigić IK, Wei Q, Strlič M (2021) Characterisation and durability of contemporary unsized Xuan paper. Cellulose 28:1011–1023

    Article  CAS  Google Scholar 

  • Łojewski T, Zięba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821

    Article  CAS  Google Scholar 

  • Makarem M, Lee MC, Kafle K, Huang S, Chae I, Yang H, Kubicki DJ, Kim HS (2019) Probing cellulose structures with vibrational spectroscopy. Cellulose 26:35–79

    Article  CAS  Google Scholar 

  • Makarova E, Shakhmatov E, Belyy V (2017) Seasonal dynamics of polysaccharides in Norway spruce (Picea abies). Carbohydr Polym 157:686–694

    Article  CAS  PubMed  Google Scholar 

  • Marrot L, Lefeuvre A, Pontoire B, Bourmaud A, Baley C (2013) Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Ind Crops Prod 51:317–327

    Article  CAS  Google Scholar 

  • Mokshina NE, Ibragimova NN, Salnikov VV, Amenitskii SI, Gorshkova TA (2012) Galactosidase of plant fibers with gelatinous cell wall: identification and localization. Russ J Plant Physiol 59:246–254

    Article  CAS  Google Scholar 

  • Mosele MM, Hansen AS, Engelsen SB, Diaz J, Sorensen I, Ulvskov P, Harholt J (2011) Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). Phytochemistry 72:1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Yoshinaga A, Takabe K (2012) Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods. Ann Bot 110:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K, Yoshinaga A, Takabe K (2014) Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae). Tree Physiol 34:1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Forte MM, Santana RM (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  PubMed  Google Scholar 

  • Razali N, Salit MS, Jawaid M, Ishak MR, Lazim Y (2015) A study on chemical composition, physical, tensile, morphological, and thermal properties of roselle fibre: effect of fibre maturity. BioResources 10:1803–1824

    Article  Google Scholar 

  • Ruel K, Nishiyama Y, Joseleau JP (2012) Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Sci 193–194:48–61

    Article  PubMed  CAS  Google Scholar 

  • Salmé L, Burgert I (2009) Cell wall features with regard to mechanical performance. A Rev Holzforschung 63:121–129

    Google Scholar 

  • Sarma KV, Pan J, Smith AJ, Uritam RA, Johnson TW, Mcgrew JT, Yong LL, Gupta RC, Tekeli S, Johns T, Young DG (1997) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. In: Selin H (ed) Paper and papermaking. Springer, Dordrecht, pp 806–829

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Silva DR, Byrne N (2017) Utilization of cotton waste for regenerated cellulose fibres: influence of degree of polymerization on mechanical properties. Carbohydr Polym 174:89–94

    Article  PubMed  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory (NREL).

  • Song YX (2011) Tian Gung Kai Wu, Guangdong Education Publishing House.

  • Tang Y, Smith JG (2013) Fluorescence and photodegradation of Xuan paper: the photostability of traditional Chinese handmade paper. J Cult Herit 14:464–470

    Article  Google Scholar 

  • Tang Y, Smith JG, Weston JR, Kong X (2017) Chinese handmade mulberry paper: generation of reactive oxygen species and sensitivity to photodegradation. J Cult Herit 28:82–89

    Article  Google Scholar 

  • Tanguy M, Bourmaud A, Baley C (2016) Plant cell walls to reinforce composite materials: relationship between nanoindentation and tensile modulus. Mater Lett 167:161–164

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crops Prod 19:245–254

    Article  CAS  Google Scholar 

  • Wimmer R, Downes GM, Evans R, Rasmussen G, French J (2002) Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung 56:244–252

    Article  CAS  Google Scholar 

  • Wu Y, Wang S, Zhou D, Xing C, Zhang Y (2009) Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species. Wood Fiber Sci 41:64–73

    CAS  Google Scholar 

  • Xiao MZ, Chen WJ, Cao XF, Chen YY, Zhao BC, Jiang ZH, Yuan TQ, Sun RC (2020) Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. Carbohydr Polym 238:116212–116220

    Article  CAS  PubMed  Google Scholar 

  • You H, Fujiwara K, Tang Q (2018) Phytosociological study of Pteroceltis tatarinowii forest in the deciduous-forest zone of eastern China. In: Greller MA, Fujiwara K, Pedrotti F (eds) Geographical changes in vegetation and plant functional types. Springer, Cham, pp 239–280

    Chapter  Google Scholar 

  • Zhai S, Sugiyama J, Imai T, Horikawa Y (2013) Cell wall characterization of windmill palm (Trachycarpus Fortunei) fibers and its functional implications. IAWA J 34:20–33

    Article  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful for financial support from the National First-class Disciplines (PNFD), National Natural Science Foundation of China (grant number No.31400496), and Natural Science Foundation of Jiangsu Province (grant number BK20140981). The experiments in this research were mainly carried out at the advanced analysis and testing center of Nanjing Forestry University. The authors also thanks to Ms. Xiaoli Chen, who works at the Key Scientific Research Base of the Paper Conversation of the State Administration of Cultural Heritage (Nanjing Museum, Jiangsu Province, China), for collecting experimental materials, also guidance on paper relics protection.

Author information

Authors and Affiliations

Authors

Contributions

New insights into Chinese traditional handmade paper: Influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii, Bingwei Chen: Conceptualization, Methodology, Formal analysis and investigation, Writing—original draft preparation. Shengcheng Zhai: Conceptualization, Writing—review and editing, Supervision, Funding acquisition. Yu’na Kan: Formal analysis and investigation, Writing—original draft preparation. Xiaodong Fan: Formal analysis and investigation. Xinzhou Wang: Methodology, Formal analysis, Writing—review and editing. Biao Pan: Methodology, Writing—review and editing. Changtong Mei: Supervision, Funding acquisition. Junji Sugiyama: Supervision, Writing—review and editing.

Corresponding author

Correspondence to Shengcheng Zhai.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Consent for participate

All the authors give explicit consent to participate and submit the article.

Consent for publication

The authors obtained consent for publication from the responsible authorities at the university/institute where the work has been carried out.

Ethical approval

All the authors agree with the content of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhai, S., Kan, Y. et al. New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii. Cellulose 28, 9943–9957 (2021). https://doi.org/10.1007/s10570-021-04150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04150-9

Keywords

Navigation