Skip to main content

Advertisement

Log in

Enhanced Photocatalytic and Biological Observations of Green Synthesized Activated Carbon, Activated Carbon Doped Silver and Activated Carbon/Silver/Titanium Dioxide Nanocomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 07 October 2021

This article has been updated

Abstract

In this study, Activated carbon/Silver/Titanium dioxide nanocomposite was successfully synthesized by hydrothermal method using jasmine flower extract. The reactions of reduction, stabilization and capping were executed from the biomolecules of jasmine flower extract. The decoration of activated carbon and noble metal to the metal oxide enhanced the properties in all ways. As the modified structural, optical and morphological properties of as-prepared nanocomposite were characterized using various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy, Scanning electron microscope (SEM) with Energy dispersive X-ray spectroscopy (EDX), and Transmission electron microscope (TEM). The photocatalytic activities under sunlight were evaluated by the degradation of methylene blue (MB). Antibacterial activity was tested against E. coli and S. aureus. The characterization results show that the Activated carbon/Silver/Titanium dioxide nanocomposite is crystalline, needle like morphology and highly optically active catalyst. The investigated Activated carbon/Silver/Titanium dioxide nanocomposite shows 96% maximum degradation efficiency at the end of 120 min under visible light irradiation. The degradation efficiency and antibacterial activity are readily higher than that of commercial TiO2. The plasmonic support to the activated carbon and titanium nanoparticles creates a large surface area, active sites and accelerated the free radical generation. These characteristics demonstrated that the prepared Activated carbon/Silver/Titanium dioxide nanocomposite material is highly suitable for the decomposition of methylene blue and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. S.K. Lakkaboyana, S. Khantong, A.K. Asmel, A. Yuzir, W.Z.W. Yaacob, J. Inorg. Org. Metal. Polym. Mater. 29, 1658–1668 (2019)

    Article  CAS  Google Scholar 

  2. E. Nascimben Santos, Z. László, C. Hodúr, G. Arthanareeswaran, G. Veréb, Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: a review. Asia-Pac. J. Chem. Eng. 15(5), e2533 (2020)

    Article  CAS  Google Scholar 

  3. M.N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater. Org. Pollut. Monit. Risk Treat. 7, 167–194 (2013)

    Google Scholar 

  4. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5(39), 30801–30818 (2015)

    Article  CAS  Google Scholar 

  5. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 65, 201–222 (2018)

    Article  CAS  Google Scholar 

  6. S.H. Lee, B.H. Jun, Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20(4), 865 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  7. Z. Zhang, W. Shen, J. Xue, Y. Liu, Y. Liu, P. Yan, J. Tang, Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res. Lett. 13(1), 1–18 (2018)

    Google Scholar 

  8. V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, B. Wei, Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 111(20), 7527–7531 (2007)

    Article  CAS  Google Scholar 

  9. S. Naraginti, Y. Li, Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B 170, 225–234 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. J. Prakash, B.S. Kaith, S. Sun, S. Bellucci, H.C. Swart, Recent progress on novel Ag–TiO2 nanocomposites for antibacterial applications, in Microbial nanobionics. (Springer, Cham, 2019), pp. 121–143

    Chapter  Google Scholar 

  11. S. Roy, Photocatalytic materials for reduction of nitroarenes and nitrates. J. Phys. Chem. C 124(52), 28345–28358 (2020)

    Article  CAS  Google Scholar 

  12. N. Roy, N. Suzuki, C. Terashima, A. Fujishima, Recent improvements in the production of solar fuels: from CO2 reduction to water splitting and artificial photosynthesis. Bull. Chem. Soc. Jpn. 92(1), 178–192 (2019)

    Article  CAS  Google Scholar 

  13. R.J. Pinto, S. Daina, P. Sadocco, C.P. Neto, T. Trindade, Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res. Int. 2013, 280512 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  14. B. Xing, C. Shi, C. Zhang, G. Yi, L. Chen, H. Guo, J. Cao, Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J. Nanomater. 2016, 1–10 (2016)

    Article  CAS  Google Scholar 

  15. Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, J. Sankar, Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity under artificial light. Compos. B Eng. 57, 105–111 (2014)

    Article  CAS  Google Scholar 

  16. F. Wu, W. Liu, J. Qiu, J. Li, W. Zhou, Y. Fang, X. Li, Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 358, 425–435 (2015)

    Article  CAS  Google Scholar 

  17. A. Hamrouni, H. Azzouzi, A. Rayes, L. Palmisano, R. Ceccato, F. Parrino, Enhanced solar light photocatalytic activity of Ag doped TiO2/Ag3PO4 composites. Nanomaterials 10(4), 795 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  18. S.P. Deshmukh, V.B. Koli, A.G. Dhodamani, S.M. Patil, V.S. Ghodake, S.D. Delekar, Ultrasonochemically modified Ag@ TiO2 nanocomposites as potent antibacterial agent in the paint formulation for surface disinfection. ChemistrySelect 6(1), 113–122 (2021)

    Article  CAS  Google Scholar 

  19. M. Zenasni, A. Quintero-Jaime, D. Salinas-Torres, A. Benyoucef, E. Morallón, Electrochemical synthesis of composite materials based on titanium carbide and titanium dioxide composites with poly (N-phenyl-O-phenylenediamine) for selective detection of uric acid. J. Electroanal. Chem. 895, 115481 (2021)

    Article  CAS  Google Scholar 

  20. A. Mukhopadhyay, S. Basak, J.K. Das, S.K. Medda, K. Chattopadhyay, G. De, Ag−TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. ACS Appl. Mater. Interfaces. 2(9), 2540–2546 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. M. Aravind, A. Ahmad, I. Ahmad, M. Amalanathan, K. Naseem, S.M.M. Mary, M. Zubair, Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J. Environ. Chem. Eng. 9, 104877 (2020)

    Article  Google Scholar 

  22. M. Aravind, M. Amalanathan, Structural, morphological, and optical properties of country egg shell derived activated carbon for dye removal. Mater. Today Proc. (2020)

  23. M. Aravind, M. Amalanathan, M.S.M. Mary, Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl. Sci. 3(4), 1–10 (2021)

    Article  Google Scholar 

  24. A. Ahmad, D. Jini, M. Aravind, C. Parvathiraja, R. Ali, M.Z. Kiyani, A. Alothman, A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arab. J. Chem. 13(12), 8717–8722 (2020)

    Article  CAS  Google Scholar 

  25. K. Sathish-Kumar, G. Vázquez-Huerta, A. Rodríguez-Castellanos, H.M. Poggi-Varaldo, O. Solorza-Feria, Microwave assisted synthesis and characterizations of decorated activated carbon. Int. J. Electrochem. Sci 7, 5484–5494 (2012)

    CAS  Google Scholar 

  26. A.S. Lanje, S.J. Sharma, R.B. Pode, Synthesis of silver nanoparticles: a safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res 2(3), 478–483 (2010)

    CAS  Google Scholar 

  27. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4(70), 36959–36966 (2014)

    Article  CAS  Google Scholar 

  28. C. Díaz, M.L. Valenzuela, O. Cifuentes-Vaca, M. Segovia, M.A. Laguna-Bercero, Incorporation of nanostructured ReO3 in silica matrix and their activity toward photodegradation of blue methylene. J. Inorg. Organomet. Polym Mater. 30(5), 1726–1734 (2020)

    Article  Google Scholar 

  29. M.H. Zori, Synthesis of TiO2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue. J. Inorg. Organomet. Polym Mater. 21(1), 81–90 (2011)

    Article  Google Scholar 

  30. L. Sherin, A. Sohail, M. Mustafa, R. Jabeen, A. Ul-Hamid, Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloid Interface Sci. Commun. 37, 100276 (2020)

    Article  CAS  Google Scholar 

  31. J.K. Ratan, M. Kaur, B. Adiraju, Synthesis of activated carbon from agricultural waste using a simple method: characterization, parametric and isotherms study. Mater. Today Proc. 5(2), 3334–3345 (2018)

    Article  CAS  Google Scholar 

  32. J. Andas, N.A.A. Satar, Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study. Mater. Today Proc. 5(9), 17611–17617 (2018)

    Article  CAS  Google Scholar 

  33. E.H. Alsharaeh, T. Bora, A. Soliman, F. Ahmed, G. Bharath, M.G. Ghoniem, J. Dutta, Sol-gel-assisted microwave-derived synthesis of anatase Ag/TiO2/GO nanohybrids toward efficient visible light phenol degradation. Catalysts 7(5), 133–143 (2017)

    Article  Google Scholar 

  34. R. Kumar, J. Rashid, M.A. Barakat, Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation. Colloids Interface Sci. Commun. 5, 1–4 (2015)

    Article  Google Scholar 

  35. M. A. Thakar, S. S. Jha, K. Phasinam, R. Manne, Y. Qureshi, V. H. Babu, X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Mater. Today Proc. (2021)

  36. K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran, A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J. Bio-and Tribo-Corros. 1(4), 1–22 (2015)

    Article  Google Scholar 

  37. S. Kulovi, S. Dalbera, S. Das, E. Zangrando, H. Puschmann, S. Dalai, New silver (I) coordination polymers with hetero donor ligands: synthesis, structure, luminescence study and photo catalytic behavior. ChemistrySelect 2(28), 9029–9036 (2017)

    Article  CAS  Google Scholar 

  38. M. Rahmani, T. Sedaghat, A facile sol-gel process for synthesis of ZnWO4 nanopartices with enhanced band gap and study of its photocatalytic activity for degradation of methylene blue. J. Inorg. Organomet. Polym Mater. 29(1), 220–228 (2019)

    Article  CAS  Google Scholar 

  39. A. Taha, M. Ben-Aissa, E. Da’na, Green synthesis of an activated carbon-supported Ag and ZnO nanocomposite for photocatalytic degradation and its antibacterial activities. Molecules 25(7), 1586 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  40. A.A. Dorothy, N.G. Subramaniam, P. Panigrahi, Tuning electronic and optical properties of TiO2 with Pt/Ag doping to a prospective photocatalyst: a first principles DFT study. Mater. Res. Exp. 6(4), 045913 (2019)

    Article  Google Scholar 

  41. M. Elango, D. Nataraj, K.P. Nazeer, M. Thamilselvan, Synthesis and characterization of nickel doped cadmium sulfide (CdS: Ni2+) nanoparticles. Mater. Res. Bull. 47(6), 1533–1538 (2012)

    Article  CAS  Google Scholar 

  42. S.P.R. Mallem, M. Koduru, K. Chandrasekhar, S.V. Prabhakar Vattikuti, R. Manne, V.R. Reddy, J.H. Lee, Potato chip-like 0D interconnected ZnCo2O4 nanoparticles for high-performance supercapacitors. Curr. Comput. Aided Drug Des. 11(5), 469 (2021)

    CAS  Google Scholar 

  43. P.S. Murphin Kumar, S. Thiripuranthagan, T. Imai, G. Kumar, A. Pugazhendhi, S.R. Vijayan, S.K. Krishnan, Pt nanoparticles supported on mesoporous CeO2 nanostructures obtained through green approach for efficient catalytic performance toward ethanol electro-oxidation. ACS Sustain. Chem. Eng. 5(12), 11290–11299 (2017)

    Article  CAS  Google Scholar 

  44. H. Saufi, M. El Alouani, S. Alehyen, M. El Achouri, J. Aride, Photocatalytic degradation of methylene blue from aqueous medium onto perlite-based geopolymer. Int. J. Chem. Eng. 200, 1–7 (2020)

    Article  Google Scholar 

  45. B.S. Sivamaruthi, V.S. Ramkumar, G. Archunan, C. Chaiyasut, N. Suganthy, Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula—in vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol. 51, 139–151 (2019)

    Article  CAS  Google Scholar 

  46. R. Shanmuganathan, I. Karuppusamy, M. Saravanan, H. Muthukumar, K. Ponnuchamy, V.S. Ramkumar, A. Pugazhendhi, Synthesis of Silver nanoparticles and their biomedical applications—a comprehensive review. Curr. Pharm. Des. 25(24), 2650–2660 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. X. Liu, H. Cao, J. Yin, Generation and photocatalytic activities of Bi@ Bi2O3 microspheres. Nano Res. 4(5), 470–482 (2011)

    Article  CAS  Google Scholar 

  48. Y. Feng, T. Yao, Y. Yang, F. Zheng, P. Chen, J. Wu, B. Xin, One step preparation of Fe2O3/reduced graphene oxide aerogel as heterogeneous Fentonlike catalyst for enhanced photodegradation of organic dyes. ChemistrySelect 3(31), 9062–9070 (2018)

    Article  CAS  Google Scholar 

  49. J. Li, J. Xu, W.L. Dai, K. Fan, Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. J. Phys. Chem. C 113(19), 8343–8349 (2009)

    Article  CAS  Google Scholar 

  50. Y. Wang, M. Zhang, S. Lv, X. Li, D. Wang, C. Song, Photogenerated oxygen vacancies in hierarchical Ag/TiO2 nanoflowers for enhanced photocatalytic reactions. ACS Omega 5(23), 13994–14005 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, P. Vaziri, Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles. Int. J. Mol. Sci. 13(10), 12242–12258 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Y. Wang, X. Zhao, L. Duan, F. Wang, H. Niu, W. Guo, A. Ali, Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method. Mater. Sci. Semicond. Process. 29, 372–379 (2015)

    Article  CAS  Google Scholar 

  53. P. Ahuja, S.K. Ujjain, R. Kanojia, P. Attri, Transition metal oxides and their composites for photocatalytic dye degradation. J. Compos. Sci. 5(3), 82 (2021)

    Article  CAS  Google Scholar 

  54. R. Nithya, S. Ragupathy, D. Sakthi, V. Arun, N. Kannadasan, Photocatalytic efficiency of brilliant green dye on ZnO loaded on cotton stalk activated carbon. Mater. Res. Exp. 7(7), 075002 (2020)

    Article  CAS  Google Scholar 

  55. M.S. Nasrollahzadeh, M. Hadavifar, S.S. Ghasemi, M.A. Chamjangali, Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl. Water Sci. 8(4), 1–12 (2018)

    Article  CAS  Google Scholar 

  56. A. Naghizadeh, S. Mohammadi-Aghdam, S. Mortazavi-Derazkola, Novel CoFe2O4@ ZnO–CeO2 ternary nanocomposite: sonochemical green synthesis using Crataegusmicrophylla extract, characterization and their application in catalytic and antibacterial activities. Bioorg. Chem. 103, 104194 (2020)

    Article  CAS  PubMed  Google Scholar 

  57. S. Asaithambi, P. Sakthivel, M. Karuppaiah, Y. Hayakawa, A. Loganathan, G. Ravi, Improved photocatalytic performance of nanostructured SnO2 via addition of alkaline earth metals (Ba2+, Ca2+ and Mg2+) under visible light irradiation. Appl. Phys. A 126(4), 1–12 (2020)

    Article  Google Scholar 

  58. B.G.T. Keerthana, P. Murugakoothan, Synthesis and characterization of CdS/TiO2 nanocomposite: methylene blue adsorption and enhanced photocatalytic activities. Vacuum 159, 476–481 (2019)

    Article  Google Scholar 

  59. C. Parvathiraja, S. Shailajha, Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. Appl. Nanosci. 11(4), 1411–1425 (2021)

    Article  CAS  Google Scholar 

  60. C. Parvathiraja, S. Shailajha, S. Shanavas, M.K. Mubina, Photocatalytic and antibacterial activity of bio-treated Ag nanoparticles synthesized using Tinospora cordifolia leaf extract. J. Mater. Sci. Mater. Electron. 30(9), 8515–8525 (2019)

    Article  CAS  Google Scholar 

  61. R.D. Desiati, M. Taspika, E. Sugiarti, Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Mater. Res. Exp. 6(9), 095059 (2019)

    Article  CAS  Google Scholar 

  62. N.P. Bharathi, N.U. Khan, S. Shreaz, A.A. Hashmi, Seed oil based zinc bioactive polymers: synthesis, characterization and biological studies. J. Inorg. Organomet. Polym Mater. 19(4), 558–565 (2009)

    Article  CAS  Google Scholar 

  63. T.M. Pereira, V.L.P. Polez, M.H. Sousa, L.P. Silva, Modulating physical, chemical, and biological properties of silver nanoparticles obtained by green synthesis using different parts of the tree Handroant husheptaphyllus (Vell) Mattos. Colloid Interface Sci. Commun. 34, 100224 (2020)

    Article  CAS  Google Scholar 

  64. P. Kanniah, J. Radhamani, P. Chelliah, N. Muthusamy, E. Joshua-Jebasingh-Sathiya-Balasingh-Thangapandi, J. Reeta-Thangapandi, R. Shanmugam, Green synthesis of multifaceted silver nanoparticles using the flower extract of Aervalanata and evaluation of its biological and environmental applications. ChemistrySelect 5(7), 2322–2331 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have gratefully acknowledged Karunya University Department of nanotechnology, St. Joseph college, Trichy. The authors are thankful to the Principal, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. This work was funded by the researchers supporting project number (RSP-2021/243) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amalanathan.

Ethics declarations

Conflict of interest

The authors declare we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained mistakes in the Acknowledgment section. The corrected Acknowledgment is given below.

Acknowledgements The authors have gratefully acknowledged Karunya University Department of nanotechnology, St. Joseph college, Trichy. The authors are thankful to the Principal, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India. This work was funded by the researchers supporting project number (RSP-2021/243) King Saud University, Riyadh, Saudi Arabia.

The original article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravind, M., Amalanathan, M., Mary, M.S.M. et al. Enhanced Photocatalytic and Biological Observations of Green Synthesized Activated Carbon, Activated Carbon Doped Silver and Activated Carbon/Silver/Titanium Dioxide Nanocomposites. J Inorg Organomet Polym 32, 267–279 (2022). https://doi.org/10.1007/s10904-021-02096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02096-w

Keywords

Navigation