Skip to main content
Log in

Morphologically Divergent Development of SnS Photocatalysts from Under-Utilized Ionic Precursors of SILAR Process

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Successive ionic layer adsorption and reaction (SILAR) process has been diversely used for deposition of various metal chalcogenides. SnS is one of them. Owing to the under-utilization of ionic precursor used in SILAR process, recovery of ionic species from solvents is important and critical before disposal. Since a variety of solutes and solvents can be used for the deposition of SnS, we have devised a comparison revealing the diversity of SnS. It is revealed that the residual cationic precursors play an important role in deciding the eventual morphology, purity and thus the photocatalytic performance of nanostructured SnS. We directly compared SnS nanostructures salvaged from ionic precursors of SnSO4 and SnCl2 under similar salvaging conditions and ensued that flower-like SnS can be obtained successfully. Intensive scanning electron microscopy and energy dispersive spectroscopy were utilized to have a closer check on the evolution of morphological and compositional characteristics. Rhodamine B and methylene blue dyes were successfully degraded by both types SnS, however SnS@SnCl2 exhibited superior performance which was credited to its unique flower-like morphology. Significantly, ~ 96.3% removal of methylene blue dye from water was achieved in only 40 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. A. U. Portia, M. Parthibavarman, and K. Ramamoorthy (2021). Unpredicted visible light induced advanced photocatalytic performance of Eu doped CaTiO3 nanoparticles prepared by facile sol–gel technique. J Clust Sci. https://doi.org/10.1007/s10876-021-02135-z.

    Article  Google Scholar 

  2. R. A. Saad, G. Younes, M. H. El-Dakdouki, and R. Al-Oweini (2021). Vanadium-substituted polyoxomolybdates for methylene blue adsorption from aqueous solutions. J Clust Sci. https://doi.org/10.1007/s10876-021-02130-4.

    Article  Google Scholar 

  3. S. Renukadevi and A. P. Jeyakumari (2021). Microwave induced inverse spinel NiFe2O4 decorated g-C3N4 nanosheet for enhanced visible light photocatalytic activity. J Clust Sci. https://doi.org/10.1007/s10876-021-02123-3.

    Article  Google Scholar 

  4. V. Kotha, K. Kumar, P. Dayman, and L. S. Panchakarla (2021). Doping with chemically hard elements to improve photocatalytic properties of ZnO nanostructures. J Clust Sci. https://doi.org/10.1007/s10876-021-02115-3.

    Article  Google Scholar 

  5. J. Bonde, P. G. Moses, T. F. Jaramillo, et al. (2008). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 140, 219–231. https://doi.org/10.1039/B803857K.

    Article  CAS  PubMed  Google Scholar 

  6. X. Rui, H. Tan, and Q. Yan (2014). Nanostructured metal sulfides for energy storage. Nanoscale 6, 9889–9924. https://doi.org/10.1039/C4NR03057E.

    Article  CAS  PubMed  Google Scholar 

  7. A. Schippers and W. Sand (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 65, 319–321.

    Article  CAS  Google Scholar 

  8. J. A. Andrade-Arvizu, M. Courel-Piedrahita, and O. Vigil-Galán (2015). SnS-based thin film solar cells: perspectives over the last 25 years. J. Mater. Sci.: Mater. Electron. 26, 4541–4556. https://doi.org/10.1007/s10854-015-3050-z.

    Article  CAS  Google Scholar 

  9. Y. Kumagai, L. A. Burton, A. Walsh, and F. Oba (2016). Electronic structure and defect physics of tin sulfides: SnS, Sn2S3, and SnS2. Phys. Rev. Appl. 6, 014009. https://doi.org/10.1103/PhysRevApplied.6.014009.

    Article  CAS  Google Scholar 

  10. U. Chalapathi, B. Poornaprakash, and S.-H. Park (2016). Chemically deposited cubic SnS thin films for solar cell applications. Sol. Energy 139, 238–248. https://doi.org/10.1016/j.solener.2016.09.046.

    Article  CAS  Google Scholar 

  11. G. Mohan Kumar, X. Fu, P. Ilanchezhiyan, S. U. Yuldashev, D. J. Lee, H. D. Cho, and W. Kang Tae (2017). Highly sensitive flexible photodetectors based on self-assembled tin monosulfide nanoflakes with graphene electrodes. ACS Appl. Mater. Interfaces 9, 32142–32150. https://doi.org/10.1021/acsami.7b09959.

    Article  CAS  PubMed  Google Scholar 

  12. N. K. Reddy, M. Devika, and E. S. R. Gopal (2015). Review on tin(II) sulfide (SnS) material: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 40, 359–398. https://doi.org/10.1080/10408436.2015.1053601.

    Article  CAS  Google Scholar 

  13. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, and C. Gumus (2010). Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition. Appl. Surf. Sci. 257, 1189–1195. https://doi.org/10.1016/j.apsusc.2010.07.104.

    Article  CAS  Google Scholar 

  14. S. Gedi, V. R. Minnam Reddy, C. Park, J. Chan-Wook, and K. T. Ramakrishna Reddy (2015). Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475. https://doi.org/10.1016/j.optmat.2015.01.043.

    Article  CAS  Google Scholar 

  15. H. K. Park, J. Jo, H. K. Hong, H. K. Song, and J. Heo (2015). Structural, optical, and electrical properties of tin sulfide thin films grown with electron-beam evaporation. Curr. Appl. Phys. 15, 964–969. https://doi.org/10.1016/j.cap.2015.05.007.

    Article  Google Scholar 

  16. C. Gao, H. Shen, L. Sun, and Z. Shen (2011). Chemical bath deposition of SnS films with different crystal structures. Mater. Lett. 65, 1413–1415. https://doi.org/10.1016/j.matlet.2011.02.017.

    Article  CAS  Google Scholar 

  17. B. Ghosh, M. Das, P. Banerjee, and S. Das (2008). Fabrication and optical properties of SnS thin films by SILAR method. Appl. Surf. Sci. 254, 6436–6440. https://doi.org/10.1016/j.apsusc.2008.04.008.

    Article  CAS  Google Scholar 

  18. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon (2011). Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 1, 1116–1125. https://doi.org/10.1002/aenm.201100330.

    Article  CAS  Google Scholar 

  19. P. Kevin, D. J. Lewis, J. Raftery, M. A. Malik, and P. O. Brien (2015). Thin films of tin(II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin(II) dithiocarbamates as single-source precursors. J. Cryst. Growth 415, 93–99. https://doi.org/10.1016/j.jcrysgro.2014.07.019.

    Article  CAS  Google Scholar 

  20. S. Mondal and P. Mitra (2008). Preparation of nanocrystalline SnS thin film by Silar. Mater. Sci. Res. India 5, 67–74.

    Article  CAS  Google Scholar 

  21. H. M. Pathan and C. D. Lokhande (2004). Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27, 85–111. https://doi.org/10.1007/BF02708491.

    Article  CAS  Google Scholar 

  22. M. A. Abbas, M. A. Basit, S. J. Yoon, G. J. Lee, M. D. Lee, T. J. Park, P. V. Kamat, and J. H. Bang (2017). Revival of solar paint concept: air-processable solar paints for the fabrication of quantum dot-sensitized solar cells. J. Phys. Chem. C 121, 17658–17670. https://doi.org/10.1021/acs.jpcc.7b05207.

    Article  CAS  Google Scholar 

  23. K. G. Deepa and J. Nagaraju (2014). Development of SnS quantum dot solar cells by SILAR method. Mater. Sci. Semicond. Process. 27, 649–653. https://doi.org/10.1016/j.mssp.2014.08.006.

    Article  CAS  Google Scholar 

  24. M. M. Momeni and A. A. Mozafari (2016). The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films. J. Mater. Sci.: Mater. Electron. 27, 10658–10666. https://doi.org/10.1007/s10854-016-5163-4.

    Article  CAS  Google Scholar 

  25. Y. A. Kalandaragh, M. B. Muradov, R. K. Mammedov, and A. Khodayari (2007). Growth process and investigation of some physical properties of CdS nanocrystals formed in polymer matrix by successive ionic layer adsorption and reaction (SILAR) method. J. Cryst. Growth 305, 175–180. https://doi.org/10.1016/j.jcrysgro.2007.03.010.

    Article  CAS  Google Scholar 

  26. M. A. Abbas, M. A. Basit, T. J. Park, and J. H. Bang (2015). Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17, 9752–9760. https://doi.org/10.1039/C5CP00941C.

    Article  CAS  PubMed  Google Scholar 

  27. P. Mitra, and S. Mondal (2013). Progress in structural and morphological characterization of ZnO thin films synthesized by SILAR. Prog. Theor. Exp. Phys. 1, 17–31.

  28. H. Tsukigase, Y. Suzuki, M.-H. Berger, T. Sagawa, and S. Yoshikawa (2011). Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells. J. Nanosci. Nanotechnol. 11, 1914–1922. https://doi.org/10.1166/jnn.2011.3582.

    Article  CAS  PubMed  Google Scholar 

  29. K. G. Deepa and J. Nagaraju (2012). Growth and photovoltaic performance of SnS quantum dots. Mater. Sci. Eng. B 177, 1023–1028. https://doi.org/10.1016/j.mseb.2012.05.006.

    Article  CAS  Google Scholar 

  30. K. Ravichandran and S. Porkodi (2018). Addressing the issue of under-utilization of precursor material in SILAR process: simultaneous preparation of CdS in two different forms—thin film and powder. Mater. Sci. Semicond. Process. 81, 30–37. https://doi.org/10.1016/j.mssp.2018.02.037.

    Article  CAS  Google Scholar 

  31. Z. Hadef, K. Kamli, A. Attaf, M. S. Aida, and B. Chouial (2017). Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis. J. Semicond. 38, 063001. https://doi.org/10.1088/1674-4926/38/6/063001.

    Article  CAS  Google Scholar 

  32. Nazir M, Muhyuddin M, Mughal F, Basit MA, Simplistic development and characterization of S/Se based metal chalcogenides for energy applications: development of S/Se based metal chalcogenides, in 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (2019), pp. 42–48

  33. P. P. Chandra, A. Mukherjee, and P. Mitra (2014). Synthesis of nanocrystalline CdS thin film by SILAR and their characterization. J Mater. https://doi.org/10.1155/2014/138163.

    Article  Google Scholar 

  34. B. Ghosh, M. Das, P. Banerjee, and S. Das (2008). Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Semicond. Sci. Technol. 23, 125013. https://doi.org/10.1088/0268-1242/23/12/125013.

    Article  CAS  Google Scholar 

  35. W. Guo, Y. Shen, M. Wu, and T. Ma (2012). Highly efficient inorganic–organic heterojunction solar cells based on SnS-sensitized spherical TiO2 electrodes. Chem. Commun. 48, 6133–6135. https://doi.org/10.1039/C2CC31903A.

    Article  CAS  Google Scholar 

  36. P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, and Y. Tong (2011). Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation. Mater. Lett. 65, 450–452. https://doi.org/10.1016/j.matlet.2010.10.055.

    Article  CAS  Google Scholar 

  37. A. J. Biacchi, D. D. Vaughn, and R. E. Schaak (2013). Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 135, 11634–11644. https://doi.org/10.1021/ja405203e.

    Article  CAS  PubMed  Google Scholar 

  38. E. Jang, W. Jun Kim, D. Woong Kim, S. H. Hong, A. Ijaz, Y. M. Park, and T. J. Park (2019). Atomic layer deposition with rotary reactor for uniform hetero-junction photocatalyst, g-C3N4 @TiO2 core–shell structures. RSC Adv. 9, 33180–33186. https://doi.org/10.1039/C9RA05958J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, and W. Xiang (2012). Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 23, 850–854. https://doi.org/10.1016/j.apt.2011.12.001.

    Article  CAS  Google Scholar 

  40. J. Tian, T. Shen, X. Liu, C. Fei, and G. Cao (2016). Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6, 1–9. https://doi.org/10.1038/srep23094.

    Article  CAS  Google Scholar 

  41. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, and G. Cao (2013). Influence of cationic precursors on CdS quantum-dot-sensitized solar cell prepared by successive ionic layer adsorption and reaction. J. Phys. Chem. C 117, 26948–26956. https://doi.org/10.1021/jp410615b.

    Article  CAS  Google Scholar 

  42. D. S. Koktysh, J. R. McBride, and S. J. Rosenthal (2007). Synthesis of SnS nanocrystals by the solvothermal decomposition of a single source precursor. Nanoscale Res. Lett. 2, 144. https://doi.org/10.1007/s11671-007-9045-9.

    Article  CAS  PubMed Central  Google Scholar 

  43. A. F. McGuire and B. W. Hapke (1995). An experimental study of light scattering by large, irregular particles. Icarus 113, 134–155. https://doi.org/10.1006/icar.1995.1012.

    Article  Google Scholar 

  44. M. A. Basit, M. A. Abbas, E. S. Jung, Y. M. Park, J. H. Bang, and T. J. Park (2016). Strategic PbS quantum dot-based multilayered photoanodes for high efficiency quantum dot-sensitized solar cells. Electrochim. Acta 211, 644–651. https://doi.org/10.1016/j.electacta.2016.06.075.

    Article  CAS  Google Scholar 

  45. S. H. Chaki, M. P. Deshpande, M. D. Chaudhary, and K. S. Mahato (2013). Synthesis and characterization of tin monosulphide nanoparticles. Adv Sci Eng Med. https://doi.org/10.1166/asem.2013.1254.

    Article  Google Scholar 

  46. Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K. K. Fung, T. Ma, A. Hagfeldt, and N. Wang (2013). Ultrarapid sonochemical synthesis of ZnO hierarchical structures: from fundamental research to high efficiencies up to 6.42% for quasi-solid dye-sensitized solar cells. Chem. Mater. 25, 1000–1012. https://doi.org/10.1021/cm400220q.

    Article  CAS  Google Scholar 

  47. M. Z. Ansari, N. Parveen, D. K. Nandi, R. Ramesh, S. A. Ansari, T. Cheon, and S. H. Kim (2019). Enhanced activity of highly conformal and layered tin sulfide (SnSx) prepared by atomic layer deposition (ALD) on 3D metal scaffold towards high performance supercapacitor electrode. Sci. Rep. 9, 10225. https://doi.org/10.1038/s41598-019-46679-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. H. Choi, J. Lee, S. Shin, J. Lee, S. Lee, H. Park, S. Kwon, N. Lee, M. Bang, and S. B. Lee (2018). Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics. Nanotechnology 29, 215201. https://doi.org/10.1088/1361-6528/aab3c1.

    Article  CAS  PubMed  Google Scholar 

  49. S. Gedi, V. R. Minnam Reddy, S. Alhammadi, H. Park, C. Jang, C. Park, and W. K. Kim (2021). Synthesis and characterization of π-SnS nanoparticles and corresponding thin films. Nanomaterials 11, 767. https://doi.org/10.3390/nano11030767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. G. Lu, M. Sun, Z. Chen, X. Jiang, and J. Jing (2020). Efficient TiO2/AgInS2/ZnS nanoarchitecture photoelectrode for the photoelectrochemical cathodic protection of copper in NaCl solution. J. Electrochem. Soc. 167, 141505. https://doi.org/10.1149/1945-7111/abc594.

    Article  CAS  Google Scholar 

  51. G. Ali, S. S. Shinde, A. Sami, K. Sung-Hae, K. Nayantara, and J. H. Lee (2020). Effect of interfacial passivation on inverted pyramid silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) heterojunction solar cells. Thin Solid Films 709, 138139. https://doi.org/10.1016/j.tsf.2020.138139.

    Article  CAS  Google Scholar 

  52. M. Sathish, S. Mitani, T. Tomai, and I. Honma (2012). Ultrathin SnS2 nanoparticles on graphene nanosheets: synthesis, characterization, and li-ion storage applications. J. Phys. Chem. C 116, 12475–12481. https://doi.org/10.1021/jp303121n.

    Article  CAS  Google Scholar 

  53. M. N. Ashiq, S. Irshad, M. F. Ehsan, S. Rehman, S. Farooq, M. Najam-ul-Haq, and A. Zia (2017). Visible-light active tin selenide nanostructures: synthesis, characterization and photocatalytic activity. New J. Chem. 41, 14689–14695. https://doi.org/10.1039/C7NJ04030J.

    Article  CAS  Google Scholar 

  54. K. Sridharan, E. Jang, J. H. Park, J. H. Kim, J. H. Lee, and T. J. Park (2015). Silver quantum cluster (Ag9)-grafted graphitic carbon nitride nanosheets for photocatalytic hydrogen generation and dye degradation. Chemistry 21, 9126–9132. https://doi.org/10.1002/chem.201500163.

    Article  CAS  PubMed  Google Scholar 

  55. I. Ali, M. Muhyuddin, N. Mullani, D. W. Kim, D. H. Kim, M. A. Basit, and T. J. Park (2020). Modernized H2S-treatment of TiO2 nanoparticles: improving quantum-dot deposition for enhanced photocatalytic performance. Curr. Appl. Phys. 20, 384–390. https://doi.org/10.1016/j.cap.2019.12.006.

    Article  Google Scholar 

  56. C. D. Pomar, A. T. Souza, G. Sombrio, F. L. Souza, J. J. Bonvent, and J. A. Souza (2018). Synthesis of SnS and ZnS hollow microarchitectures decorated with nanostructures and their photocatalytic behavior for dye degradation. ChemistrySelect 3, 3774–3780. https://doi.org/10.1002/slct.201800383.

    Article  CAS  Google Scholar 

  57. D. Pan, S. Ge, J. Zhao, Q. Shao, L. Guo, X. Zhang, J. Lin, G. Xu, and Z. Guo (2018). Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans. 47, 9765–9778. https://doi.org/10.1039/C8DT01045E.

    Article  CAS  PubMed  Google Scholar 

  58. X. Chen, B. Zhou, S. Yang, H. Wu, Y. Wu, L. Wu, J. Pan, and X. Xiong (2015). In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity. RSC Adv. 5, 68953–68963. https://doi.org/10.1039/C5RA11801H.

    Article  CAS  Google Scholar 

  59. Z.-D. Meng, L. Zhu, K. Ullah, S. Ye, and W. C. Oh (2015). Synthesis of nanosized SnS-TiO2 photocatalysts with excellent degradation effect of TBA under visible light irradiation. Korean J. Mater. Res. 25, 455–461.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The revision of this work being carried out at NEL, Hanyang University, Ansan, South Korea was supported by the Technology Innovation Program (Project No. 20010727) funded by the Ministry of Trade, Industry and Energy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Abdul Basit or Tae Joo Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, M.A., Tariq, Z., Zahid, S. et al. Morphologically Divergent Development of SnS Photocatalysts from Under-Utilized Ionic Precursors of SILAR Process. J Clust Sci 33, 2443–2454 (2022). https://doi.org/10.1007/s10876-021-02161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02161-x

Keywords

Navigation