Skip to main content
Log in

Effect of Initial Microstructure on the Hot Deformation Behavior and Microstructure Evolution of Aluminum Alloy AA2060

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructure evolution and hot deformation behavior of a Li-containing aluminum alloy AA2060 with different initial microstructure (homogenized vs. pre-rolled) were studied by isothermal hot deformation. The tests were performed within a wide range of deformation temperatures of 370–490 ℃ and strain rates of 0.01–10 s−1. Results show that the stress drop ratio of the pre-rolled specimen is higher than that of the homogenized one under the same deformation condition. Microstructure were analyzed on the thermal processing maps in unstable and optimum processing domain, and a higher dynamic recrystallization fraction can be observed in the pre-rolled specimen that has more substructures and smaller grains. Four types of the dynamic recrystallization were observed and the mechanism for deformation softening was discussed in this work.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.J.H. Wanhill, G.H. Bray, Chapter 2-Aerostructural Design and Its Application to Aluminum-Lithium Alloys. in Aluminumlithium Alloys, Processing, Properties and Applications, ed. by N.E. Prasad, A.A. Gokhale, R.J.H. Wanhill Butterworth-Heinemann (Butterworth-Heinemann, Oxford, 2014), pp. 27–58

  2. A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, D.Y. Chen, J. Adv. Res. 10, 49 (2018)

    Article  Google Scholar 

  3. X. Sheng, L.D. Yang, Z.R. Hua, L.J. Feng, C.Y. Lai, Z.X. Hu, T. Nonferr. Metal. Soc. 25, 3855 (2015)

    Article  Google Scholar 

  4. Z. Fei, S. Jian, Y.X. dong, S.J. lin, Rare Metal. Mat. Eng. 43, 1312 (2014)

  5. X. Huang, H. Zhang, Y. Han, W. Wu, J. Chen, Mater. Sci. Eng. A 527, 485 (2010)

    Article  Google Scholar 

  6. H.Z. Li, Z. Li, M. Song, X.P. Liang, F.F. Guo, Mater. Design 31, 2171 (2010)

    Article  CAS  Google Scholar 

  7. O. Ling, Z.Q. Zheng, Y.F. Nie, H.G. Jian, J. Alloy. Compd. 648, 681 (2015)

    Article  Google Scholar 

  8. R. Zhu, Q. Liu, J. Li, S. Xiang, Y. Chen, X. Zhang, J. Alloy. Compd. 650, 75 (2015)

    Article  CAS  Google Scholar 

  9. Q. Yang, X. Wang, X. Li, Z. Deng, Z. Jia, Z. Zhang, G. Huang, Q. Liu, Mater. Charact. 131, 500 (2017)

    Article  CAS  Google Scholar 

  10. L.F. Cao, B. Liao, X.D. Wu, C.Y. Li, G.J. Huang, N.P. Cheng, Curr. Comput.-Aid. Drug 10, 416 (2020)

    CAS  Google Scholar 

  11. W.C. Yu, H.Y. Li, R. Du, W. You, M.C. Zhao, Z.A. Wang, Mater. Charact. 145, 53 (2018)

    Article  CAS  Google Scholar 

  12. G. Avramovic-Cingara, D.D. Perovic, H.J. McQueen, Metall. Mater. Trans. A 27, 3478 (1996)

  13. L.Y. Ye, X.M. Zhang, Y.W. Liu, J.G. Tang, D.W. Zheng, Mater. Sci. Technol. 27, 125 (2011)

    Article  Google Scholar 

  14. T.J. Ruggles, D.T. Fullwood, Ultramicroscopy 133, 8 (2013)

    Article  CAS  Google Scholar 

  15. W.X. Ya, J.J. Tang, L.G. Ai, W.X. Ming, S. Jian, Z. Liang, J. Alloy. Compd. 815, 152469 (2020)

    Article  Google Scholar 

  16. J. Humphreys, G.S. Rohrer, A. Rollett, Chapter 9 - Recrystallization of Two-Phase Alloys, in Recrystallization and Related Annealing Phenomena, 3rd ed. (Elsevier, Amsterdam, 2017), pp. 321–359

  17. H.J. McQueen, Mater. Sci. Eng. A 387–389, 203 (2004)

    Article  Google Scholar 

  18. C.J. Shi, J. Lai, X.G. Chen, Materials 7, 244 (2014)

  19. Y. Wang, G. Zhao, X. Xu, X. Chen, C. Zhang, J. Alloy. Compd. 779, 735 (2019)

    Article  CAS  Google Scholar 

  20. C.M. Sellars, W.J.M. Tegart, Acta Metall. 14, 1136 (1966)

    Article  CAS  Google Scholar 

  21. H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Vacuum 160, 293 (2019)

    Article  CAS  Google Scholar 

  22. B. Li, Q. Pan, Z. Yin, Mater. Sci. Eng. A 614, 199 (2014)

    Article  CAS  Google Scholar 

  23. B. Shen, L. Deng, X. Wang, Mater. Sci. Eng. A 625, 288 (2015)

    Article  CAS  Google Scholar 

  24. X. Yang, W. Huang, X. Zhu, R. Zhang, F. Guo, L. Hu, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00800-y

    Article  Google Scholar 

  25. S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 571, 1 (2013)

  26. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15, 1883 (1984)

  27. X.-X. Yu, Y.-R. Zhang, D.-F. Yin, Z.-M. Yu, S.-F. Li, Acta Metall. Sinica Engl. 28,817 (2015)

  28. G.J. Reddy, N. Srinivasan, A.A. Gokhale, B.P. Kashyap, J. Mater. Prcocess. Tech. 209, 5964 (2009)

    Article  Google Scholar 

  29. Y.V.R.K Prasad, Indian J. Technol. 28, 435 (1990)

    CAS  Google Scholar 

  30. H. Garmestani, S. Lin, B.L. Adams, S. Ahzi, J. Mech. Phys. Solids. 49, 589 (2001)

    Article  Google Scholar 

  31. A. Ma, F. Roters, Acta Mater. 52, 3603 (2004)

    Article  CAS  Google Scholar 

  32. S. Mandal, A.K. Bhaduri, V.S. Sarma, Metall. Mater. Trans. A 42, 1062 (2011)

  33. W.J. He, C.H. Li, B.F. Luan, R.S. Qiu, K. Wang, Z.Q. Li, Q. Liu, T. Nonferr. Metal. Soc. 25, 3578 (2015)

    Article  CAS  Google Scholar 

  34. A. Godfrey, W.Q. Cao, Q. Liu, N. Hansen, Metall. Mater. Trans. A 36, 2371 (2005)

  35. A. Godfrey, N. Hansen, D.J. Jensen, Metall. Mater. Trans. A 38, 2329 (2007)

  36. X. Yang, W. Huang, X. Zhu, F. Guo, Y. Ma, L. Chai, R. Zhang, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00670-4

    Article  Google Scholar 

  37. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloy. Compd. 640, 101 (2015)

  38. K. Huang, R.E. Logé, Mater. Design 111, 548 (2016)

    Article  CAS  Google Scholar 

  39. A. Halfpenny, J. Prior, P.J. Wheeler, Tectonophysics 427, 3 (2006)

    Article  CAS  Google Scholar 

  40. I. Shimizu, J. Struct. Geol. 30, 899 (2008)

    Article  Google Scholar 

  41. J.K. Solberg, H.J. McQueen, N. Ryum, E. Nes, Philos. Mag. A 60, 447 (1989)

    Article  CAS  Google Scholar 

  42. H.R. Rezaei Ashtiani, M.H. Parsa, H. Bisadi, Mater. Design 42,478 (2012)

  43. M.H. Maghsoudi, A. Zarei-Hanzaki, P. Changizian, A. Marandi, Mater. Design 57, 487 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support by the National Natural Science Foundation of China (51421001); the Open Fund of National Key Laboratory of Science and Technology on High-strength Structure Materials, Central South University; and the Fundamental Research Funds for the Central Universities (2020CDJDCL001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangjie Huang or Lingfei Cao.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Huang, G., Cao, L. et al. Effect of Initial Microstructure on the Hot Deformation Behavior and Microstructure Evolution of Aluminum Alloy AA2060. Met. Mater. Int. 28, 1561–1574 (2022). https://doi.org/10.1007/s12540-021-01025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01025-3

Keywords

Navigation