Skip to main content
Log in

The Dual \(\phi \)-Brunn–Minkowski Inequality

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we define a dual \(\phi \)-combination \({\widetilde{Q}}_{\phi , \xi }\). Using the log-convexity of strictly decreasing convex function \(\phi ^{-1}\), we give the dual \(\phi \)-Brunn–Minkowski inequality. Moreover, the equivalence between the dual \(\phi \)-Brunn–Minkowski inequality and the dual \(\phi \)-Minkowski mixed volume inequality is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky, K.J.: Stronger versions of the Orlicz–Petty projection inequality. J. Differ. Geom. 95, 215–247 (2013)

    Article  MathSciNet  Google Scholar 

  2. Du, C.M., Guo, L.J., Leng, G.S.: Volume inequalities for Orlicz mean bodies. Proc. Indian Acad. Sci. (Math. Sci.) 125, 57–70 (2015)

    Article  MathSciNet  Google Scholar 

  3. Firey, W.J.: \(p\)-means of convex bodies. Math. Scand. 10, 17–24 (1962)

    Article  MathSciNet  Google Scholar 

  4. Gardner, R.J.: On the Busemann-Petty problem concerning central sections of centrally symmetric convex bodies. Bull. Amer. Math. Soc. 30, 222–226 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gardner, R.J.: Intersection bodies and the Busemann–Petty problem. Trans. Amer. Math. Soc. 342, 435–445 (1994)

    Article  MathSciNet  Google Scholar 

  6. Gardner, R.J.: A positive answer to the Busemann–Petty problem in three dimensions. Ann. Math. 140, 435–447 (1994)

    Article  MathSciNet  Google Scholar 

  7. Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39, 355–405 (2002)

    Article  MathSciNet  Google Scholar 

  8. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  9. Gardner, R.J., Hug, D., Weil, W.: The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J. Differ. Geom. 97, 427–476 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gardner, R.J., Hug, D., Weil, W., Ye, D.: The dual Orlicz-Brunn-Minkowski theory. J. Math. Anal. Appl. 430, 810–829 (2015)

    Article  MathSciNet  Google Scholar 

  11. Goodey, P.R., Weil, W.: Intersection bodies and ellipsoids. Mathematika 42, 295–304 (1995)

    Article  MathSciNet  Google Scholar 

  12. Guo, L.J., Leng, G.S., Du, C.M.: The Orlicz mean zonoid operator. J. Math. Anal. Appl. 424, 1261–1271 (2015)

    Article  MathSciNet  Google Scholar 

  13. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  Google Scholar 

  14. Huang, Q.Z., He, B.W.: On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48, 281–297 (2012)

    Article  MathSciNet  Google Scholar 

  15. Klain, D.A.: Star valuations and dual mixed volumes. Adv. Math. 121, 80–101 (1996)

    Article  MathSciNet  Google Scholar 

  16. Li, A.J., Leng, G.S.: A new proof of the Orlicz Busemann–Petty centroid inequality. Proc. Amer. Math. Soc. 139, 1473–1481 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lutwak, E.: Dual mixed volumes. Pacific J. Math. 58, 531–538 (1975)

    Article  MathSciNet  Google Scholar 

  18. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. Math. 71, 232–261 (1988)

    Article  MathSciNet  Google Scholar 

  19. Lutwak, E.: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 60, 365–391 (1990)

    Article  MathSciNet  Google Scholar 

  20. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  Google Scholar 

  22. Lv, S.J.: The \(\varphi \)-Brunn-Minkowski inequality. Acta Math. Hungar. 156, 226–239 (2018)

    Article  MathSciNet  Google Scholar 

  23. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  24. Wang, G.T., Leng, G.S., Huang, Q.Z.: Volume inequalities for Orlicz zonotopes. J. Math. Anal. Appl. 391, 183–189 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, W., Liu, L.J.: The dual log-Brunn-Minkowski inequalities. Taiwan. J. Math. 20, 909–919 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Wang, W.D., Shi, W., Ye, S.: Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals. Indag. Math. 28, 721–735 (2017)

    Article  MathSciNet  Google Scholar 

  27. Xi, D.M., Jin, H.L., Leng, G.S.: The Orlicz Brunn-Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    Article  MathSciNet  Google Scholar 

  28. Xiong, G., Zou, D.: Orlicz mixed quermassintegrals. Sci. China Math. 57, 2549–2562 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ye, D.: Dual Orlicz-Brunn-Minkowski theory: Orlicz \(\varphi \)-radial addition, Orlicz \(L_\phi \)-dual mixed volume and related inequalities, arXiv: 1404.6991v1. (2014)

  30. Ye, D.: Dual Orlicz-Brunn-Minkowski theory: dual Orlicz \(L_\phi \) affine and geominimal surface areas. J. Math. Anal. Appl. 443, 352–371 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ye, D.: New Orlicz affine isoperimetric inequalities. J. Math. Anal. Appl. 427, 905–929 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yuan, S.F., Jin, H.L., Leng, G.S.: Orlicz geominimal surface areas. Math. Inequal. Appl. 18, 353–362 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, G.: Centered bodies and dual mixed volumes. Trans. Amer. Math. Soc. 345, 777–801 (1994)

    Article  MathSciNet  Google Scholar 

  34. Zhang, G.: A positive solution to the Busemann-Petty problem in \({\mathbb{R}}^4\). Ann. Math. 149, 535–543 (1999)

    Article  MathSciNet  Google Scholar 

  35. Zhang, G.: Dual kinematic formulas. Trans. Amer. Math. Soc. 351, 985–995 (1999)

    Article  MathSciNet  Google Scholar 

  36. Zhu, B.C., Zhou, J.Z., Xu, W.X.: Dual Orlicz-Brunn-Minkowski theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zhu, G.X.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  Google Scholar 

  38. Zou, D., Xiong, G.: The minimal Orlicz surface area. Adv. Appl. Math. 61, 25–45 (2014)

    Article  MathSciNet  Google Scholar 

  39. Zou, D., Xiong, G.: Orlicz-John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zou, D., Xiong, G.: Orlicz-Legendre ellipsoids. J. Geom. Anal. 26, 2474–2502 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by the Natural Science Foundation of China (Grant No.11371224), the Research Foundation of Qinghai Normal University (Grant No.2019zr002), and the Research Foundation of Qinghai Normal University (Grant No.2020QZR009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Li, T. & Wang, W. The Dual \(\phi \)-Brunn–Minkowski Inequality. Mediterr. J. Math. 18, 195 (2021). https://doi.org/10.1007/s00009-021-01834-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01834-1

Keywords

2010 Mathematics Subject Classification

Navigation