Skip to main content
Log in

Overexpression of SMC4 predicts a poor prognosis in cervical cancer and facilitates cancer cell malignancy phenotype by activating NF-κB pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Cervical cancer is one of the leading female malignancy tumors worldwide. Structural maintenance of chromosomes 4 (SMC4), a member of the SMC family, is associated with cancer pathogenesis and progression. However, the role of SMC4 in cervical cancer is still unclear. In the study, SMC4 was increased in cervical cancer tissues compared with adjacent normal tissues. The SMC4 knockdown and overexpression were performed in cervical cancer cells. SMC4 knockdown inhibited cell proliferation, colony formation, cell migration and invasion, and suppressed epithelial-mesenchymal transition (EMT). Conversely, SMC4 overexpression exerted opposite effects. Moreover, SMC4 knockdown down-regulated stem cell markers, reduced the capacity of spheroid formation and inactivated NF-κB pathway. SMC4 overexpression contributed to stem cell markers, and stimulated spheroid formation and NF-κB pathway activation. Additionally, BAY11-7082 (an NF-κB inhibitor) alleviated the SMC4-mediated the effects in cervical cancer cells. In conclusion, these findings demonstrated that SMC4 overexpression facilitated the development of cervical cancer cells by activating NF-κBpathway, which provides a new therapeutic target for patients with cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  2. Colombo N, Carinelli S, Colombo A, Marini C, Rollo D, Sessa C, et al. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii27–32. https://doi.org/10.1093/annonc/mds268.

    Article  PubMed  Google Scholar 

  3. Zhao S, Yan L, Zhao Z, Rong F. Up-regulation of miR-203 inhibits the growth of cervical cancer cells by inducing cell cycle arrest and apoptosis. Eur J Gynaecol Oncol. 2019;40(5):791–5.

    Google Scholar 

  4. Mazdziarz A, Wygledowski J, Osuch B, Jagielska B, Spiewankiewicz B. New directions in cervical cancer prophylaxis worldwide and in Poland—case study of the Polish rural female population. Ann Agric Environ Med. 2017;24(4):592–5. https://doi.org/10.5604/12321966.1232093.

    Article  PubMed  Google Scholar 

  5. Ronco G, Franceschi S. Cervical cancer screening: the transformational role of routine human papillomavirus testing. Ann Intern Med. 2018;168(1):75–6. https://doi.org/10.7326/M17-2872.

    Article  PubMed  Google Scholar 

  6. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Acta Anaesthesiol Scand. 2018;62(10):1473–80. https://doi.org/10.1111/aas.13250.

    Article  PubMed  Google Scholar 

  7. Aviles-Jimenez F, Yu G, Torres-Poveda K, Madrid-Marina V, Torres J. On the search to elucidate the role of microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res. 2017;48(8):754–65. https://doi.org/10.1016/j.arcmed.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan W, Xiaoyun H, Haifeng Q, Jing L, Weixu H, Ruofan D, et al. MicroRNA-218 enhances the radiosensitivity of human cervical cancer via promoting radiation induced apoptosis. Int J Med Sci. 2014;11(7):691–6. https://doi.org/10.7150/ijms.8880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885–95. https://doi.org/10.2147/DDDT.S106412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Losada A, Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 2005;19(11):1269–87. https://doi.org/10.1101/gad.1320505.

    Article  CAS  PubMed  Google Scholar 

  11. Feng XD, Song Q, Li CW, Chen J, Tang HM, Peng ZH, et al. Structural maintenance of chromosomes 4 is a predictor of survival and a novel therapeutic target in colorectal cancer. Asian Pac J Cancer Prev. 2014;15(21):9459–65. https://doi.org/10.7314/apjcp.2014.15.21.9459.

    Article  PubMed  Google Scholar 

  12. Jinushi T, Shibayama Y, Kinoshita I, Oizumi S, Jinushi M, Aota T, et al. Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer Med. 2014;3(6):1544–52. https://doi.org/10.1002/cam4.309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Zhou J, Zhong D, Zhou Y, Zhang W, Wu W, et al. Overexpression of SMC4 activates TGFbeta/Smad signaling and promotes aggressive phenotype in glioma cells. Oncogenesis. 2017;6(3): e301. https://doi.org/10.1038/oncsis.2017.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou B, Yuan T, Liu M, Liu H, Xie J, Shen Y, et al. Overexpression of the structural maintenance of chromosome 4 protein is associated with tumor de-differentiation, advanced stage and vascular invasion of primary liver cancer. Oncol Rep. 2012;28(4):1263–8. https://doi.org/10.3892/or.2012.1929.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al. A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:55. https://doi.org/10.1186/1756-9966-33-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao SG, Evans JR, Kothari V, Sun G, Larm A, Mondine V, et al. The landscape of prognostic outlier genes in high-risk prostate cancer. Clin Cancer Res. 2016;22(7):1777–86. https://doi.org/10.1158/1078-0432.CCR-15-1250.

    Article  CAS  PubMed  Google Scholar 

  17. Neumann M, Naumann M. Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 2007;21(11):2642–54. https://doi.org/10.1096/fj.06-7615rev.

    Article  CAS  PubMed  Google Scholar 

  18. Rinkenbaugh AL, Baldwin AS. The NF-kappaB pathway and cancer stem cells. Cells. 2016. https://doi.org/10.3390/cells5020016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Prusty BK, Husain SA, Das BC. Constitutive activation of nuclear factor -kB: preferntial homodimerization of p50 subunits in cervical carcinoma. Front Biosci. 2005;10:1510–9. https://doi.org/10.2741/1635.

    Article  CAS  PubMed  Google Scholar 

  20. Nair A, Venkatraman M, Maliekal TT, Nair B, Karunagaran D. NF-kappaB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene. 2003;22(1):50–8. https://doi.org/10.1038/sj.onc.1206043.

    Article  CAS  PubMed  Google Scholar 

  21. Hirano T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 2012;26(15):1659–78. https://doi.org/10.1101/gad.194746.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang C, Kuang M, Li M, Feng L, Zhang K, Cheng S. SMC4, which is essentially involved in lung development, is associated with lung adenocarcinoma progression. Sci Rep. 2016;6:34508. https://doi.org/10.1038/srep34508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. https://doi.org/10.1038/35000034.

    Article  CAS  PubMed  Google Scholar 

  24. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66. https://doi.org/10.1038/nrm757.

    Article  CAS  PubMed  Google Scholar 

  25. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56. https://doi.org/10.1016/j.cell.2005.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu G, Qi F, Zhang J, Xu J, Shi T, Miao Y. Overexpression of OCT4 contributes to progression of hepatocellular carcinoma. Tumour Biol. 2016;37(4):4649–54. https://doi.org/10.1007/s13277-015-4285-2.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang JM, Wei K, Jiang M. OCT4 but not SOX2 expression correlates with worse prognosis in surgical patients with triple-negative breast cancer. Breast Cancer. 2018;25(4):447–55. https://doi.org/10.1007/s12282-018-0844-x.

    Article  PubMed  Google Scholar 

  28. Sodek KL, Ringuette MJ, Brown TJ. Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer. 2009;124(9):2060–70. https://doi.org/10.1002/ijc.24188.

    Article  CAS  PubMed  Google Scholar 

  29. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706. https://doi.org/10.1016/j.cell.2009.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang YC, Huo FC, Wei LL, Gong CC, Pan YJ, Mou J, et al. PAK5-mediated phosphorylation and nuclear translocation of NF-kappaB-p65 promotes breast cancer cell proliferation in vitro and in vivo. J Exp Clin Cancer Res. 2017;36(1):146. https://doi.org/10.1186/s13046-017-0610-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perkins ND. The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer. 2012;12(2):121–32. https://doi.org/10.1038/nrc3204.

    Article  CAS  PubMed  Google Scholar 

  32. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6. https://doi.org/10.1038/nature02924.

    Article  CAS  PubMed  Google Scholar 

  33. Tergaonkar V, Perkins ND. p53 and NF-kappaB crosstalk: IKKalpha tips the balance. Mol Cell. 2007;26(2):158–9. https://doi.org/10.1016/j.molcel.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HH designed the study, supervised the data collection, CZ analyzed the data, interpreted the data, YT prepare the manuscript for publication and reviewed the draft of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Hui He.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the standards upheld by the Ethics Committee of Suzhou Municipal Hospital and with those of the 1964 Helsinki Declaration and its later amendments for ethical research involving human subjects (Approval No. K-2016-GSKY20160401). All animal experiments were approved by the Ethics Committee of Suzhou Municipal Hospital for the use of animals and conducted in accordance with the National Institutes of Health Laboratory Animal Care and Use Guidelines (Approval No.201904-37).

Informed consent

Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zheng, C. & Tang, Y. Overexpression of SMC4 predicts a poor prognosis in cervical cancer and facilitates cancer cell malignancy phenotype by activating NF-κB pathway. Human Cell 34, 1888–1898 (2021). https://doi.org/10.1007/s13577-021-00603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00603-2

Keywords

Navigation