Skip to main content

Advertisement

Log in

Cognitive Deficits in Type-1 Diabetes: Aspects of Glucose, Cerebrovascular and Amyloid Involvement

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The evidence shows that individuals with type-1 diabetes mellitus (T1DM) are at greater risk of accelerated cognitive impairment and dementia. Although, to date the mechanisms are largely unknown. An emerging body of literature indicates that dysfunction of cerebral neurovascular network and plasma dyshomeostasis of soluble amyloid-β in association with impaired lipid metabolism are central to the onset and progression of cognitive deficits and dementia. However, the latter has not been extensively considered in T1DM. Therefore, in this review, we summarised the literature concerning altered lipid metabolism and cerebrovascular function in T1DM as an implication for potential pathways leading to cognitive decline and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63–9. https://doi.org/10.1136/postgradmedj-2015-133281.

    Article  CAS  PubMed  Google Scholar 

  2. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379(9833):2291–9. https://doi.org/10.1016/S0140-6736(12)60360-2.

    Article  PubMed  Google Scholar 

  3. Gaudieri PA, Chen R, Greer TF, Holmes CS. Cognitive function in children with type 1 diabetes: a meta-analysis. Diabetes Care. 2008;31(9):1892–7. https://doi.org/10.2337/dc07-2132.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Serbedzija P, Ishii DN. Insulin and insulin-like growth factor prevent brain atrophy and cognitive impairment in diabetic rats. Indian J Endocrinol Metab. 2012;16(Suppl 3):S601–10. https://doi.org/10.4103/2230-8210.105578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lacy ME, Gilsanz P, Karter AJ, Quesenberry CP, Pletcher MJ, Whitmer RA. Long-term glycemic control and dementia risk in type 1 diabetes. Diabetes Care. 2018;41(11):2339–45. https://doi.org/10.2337/dc18-0073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verberk IMW, Slot RE, Verfaillie SCJ, Heijst H, Prins ND, van Berckel BNM, Scheltens P, Teunissen CE, van der Flier WM. Plasma amyloid as Prescreener for the earliest Alzheimer pathological changes. Ann Neurol. 2018;84(5):648–58. https://doi.org/10.1002/ana.25334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gale SA, Acar D, Daffner KR. Dementia. Am J Med. 2018;131(10):1161–9. https://doi.org/10.1016/j.amjmed.2018.01.022.

    Article  PubMed  Google Scholar 

  8. Fandos N, Perez-Grijalba V, Pesini P, Olmos S, Bossa M, Villemagne VL, et al. Plasma amyloid beta 42/40 ratios as biomarkers for amyloid beta cerebral deposition in cognitively normal individuals. Alzheimers Dement (Amst). 2017;8:179–87. https://doi.org/10.1016/j.dadm.2017.07.004.

    Article  Google Scholar 

  9. Jacobson AM, Ryan CM, Cleary PA, Waberski BH, Weinger K, Musen G, et al. Biomedical risk factors for decreased cognitive functioning in type 1 diabetes: an 18 year follow-up of the diabetes control and complications trial (DCCT) cohort. Diabetologia. 2011;54(2):245–55. https://doi.org/10.1007/s00125-010-1883-9.

    Article  CAS  PubMed  Google Scholar 

  10. Kirchhoff BA, Jundt DK, Doty T, Hershey T. A longitudinal investigation of cognitive function in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes. 2017;18(6):443–9. https://doi.org/10.1111/pedi.12414.

    Article  CAS  PubMed  Google Scholar 

  11. Nunley KA, Rosano C, Ryan CM, Jennings JR, Aizenstein HJ, Zgibor JC, Costacou T, Boudreau RM, Miller R, Orchard TJ, Saxton JA. Clinically relevant cognitive impairment in middle-aged adults with childhood-onset type 1 diabetes. Diabetes Care. 2015;38(9):1768–76. https://doi.org/10.2337/dc15-0041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rawlings AM, Sharrett AR, Albert MS, Coresh J, Windham BG, Power MC, Knopman DS, Walker K, Burgard S, Mosley TH, Gottesman RF, Selvin E. The Association of Late-Life Diabetes Status and Hyperglycemia with Incident Mild Cognitive Impairment and dementia: the ARIC study. Diabetes Care. 2019;42(7):1248–54. https://doi.org/10.2337/dc19-0120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Szablewski L. Glucose transporters in brain: in health and in Alzheimer's disease. J Alzheimers Dis. 2017;55(4):1307–20. https://doi.org/10.3233/JAD-160841.

    Article  CAS  PubMed  Google Scholar 

  14. Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Res. 1998;797(1):1–11. https://doi.org/10.1016/s0006-8993(98)00103-6.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008;582(2):359–64. https://doi.org/10.1016/j.febslet.2007.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horwood N, Davies DC. Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer's disease. Virchows Arch. 1994;425(1):69–72. https://doi.org/10.1007/BF00193951.

    Article  CAS  PubMed  Google Scholar 

  17. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Ann Neurol. 1994;35(5):546–51. https://doi.org/10.1002/ana.410350507.

    Article  CAS  PubMed  Google Scholar 

  18. Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol Aging. 1997;18(5):469–74. https://doi.org/10.1016/s0197-4580(97)00111-5.

    Article  CAS  PubMed  Google Scholar 

  19. Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem. 1989;53(4):1083–8. https://doi.org/10.1111/j.1471-4159.1989.tb07399.x.

    Article  CAS  PubMed  Google Scholar 

  20. De Giorgis V, Masnada S, Varesio C, Chiappedi MA, Zanaboni M, Pasca L, et al. Overall cognitive profiles in patients with GLUT1 deficiency syndrome. Brain Behav. 2019;9(3):e01224. https://doi.org/10.1002/brb3.1224.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, Sullivan JS, Zhao Z, Meiselman HJ, Wenby RB, Soto J, Abel ED, Makshanoff J, Zuniga E, de Vivo DC, Zlokovic BV. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30. https://doi.org/10.1038/nn.3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80. https://doi.org/10.3233/jad-2005-7107.

    Article  CAS  PubMed  Google Scholar 

  23. Soto M, Cai W, Konishi M, Kahn CR. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc Natl Acad Sci U S A. 2019;116(13):6379–84. https://doi.org/10.1073/pnas.1817391116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38. https://doi.org/10.1001/archneurol.2011.233.

    Article  PubMed  Google Scholar 

  25. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, Dahl D, Caulder E, Neth B, Montine TJ, Jung Y, Maldjian J, Whitlow C, Friedman S. Effects of regular and Long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial. J Alzheimers Dis. 2017;57(4):1325–34. https://doi.org/10.3233/JAD-161256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lacy ME, Gilsanz P, Eng C, Beeri MS, Karter AJ, Whitmer RA. Severe hypoglycemia and cognitive function in older adults with type 1 diabetes: the study of longevity in diabetes (SOLID). Diabetes Care. 2020;43(3):541–8. https://doi.org/10.2337/dc19-0906.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301(15):1565–72. https://doi.org/10.1001/jama.2009.460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view. Neurochem Int. 2013;63(4):331–43. https://doi.org/10.1016/j.neuint.2013.06.018.

    Article  CAS  PubMed  Google Scholar 

  29. McNay EC, Cotero VE. Mini-review: impact of recurrent hypoglycemia on cognitive and brain function. Physiol Behav. 2010;100(3):234–8. https://doi.org/10.1016/j.physbeh.2010.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care. 2005;28(3):726–35.

    Article  Google Scholar 

  31. Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci. 2015;1353(1):60–71. https://doi.org/10.1111/nyas.12807.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, et al. Long-term effect of diabetes and its treatment on cognitive function. N Engl J Med. 2007;356(18):1842–52. https://doi.org/10.1056/NEJMoa066397.

    Article  PubMed  Google Scholar 

  33. Reichard P, Pihl M, Rosenqvist U, Sule J. Complications in IDDM are caused by elevated blood glucose level: the Stockholm diabetes intervention study (SDIS) at 10-year follow up. Diabetologia. 1996;39(12):1483–8.

    Article  CAS  Google Scholar 

  34. Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, al-Salami H, Coulson SH, Nesbit M, Mamo JCL. Blood-brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: An implication for causal link. Front Aging Neurosci. 2017;9:399. https://doi.org/10.3389/fnagi.2017.00399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, Nelson D, Takechi R. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2. https://doi.org/10.1186/s12979-015-0029-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62. https://doi.org/10.1017/S0007114509992194.

    Article  CAS  PubMed  Google Scholar 

  37. Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Mamo JC. Dietary fats, cerebrovasculature integrity and Alzheimer's disease risk. Prog Lipid Res. 2010;49(2):159–70. https://doi.org/10.1016/j.plipres.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  38. Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice. J Neuroinflammation. 2013;10:73. https://doi.org/10.1186/1742-2094-10-73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mamo JC, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, et al. Probucol prevents blood-brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 2018;1479164118795274:87–97. https://doi.org/10.1177/1479164118795274.

    Article  CAS  Google Scholar 

  40. Wong R, Al-Omary M, Baker D, Spratt N, Boyle A, Baker N, et al. Cognitive dysfunction is associated with abnormal responses in cerebral blood flow in patients with single ventricular physiology: novel insights from transcranial Doppler ultrasound. Congenit Heart Dis. 2019;14(4):638–44. https://doi.org/10.1111/chd.12763.

    Article  PubMed  Google Scholar 

  41. Nealon RS, Howe PR, Jansen L, Garg M, Wong RH. Impaired cerebrovascular responsiveness and cognitive performance in adults with type 2 diabetes. J Diabetes Complicat. 2017;31(2):462–7. https://doi.org/10.1016/j.jdiacomp.2016.06.025.

    Article  Google Scholar 

  42. Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6. https://doi.org/10.1038/s41591-018-0297-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302. https://doi.org/10.1016/j.neuron.2014.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527–35. https://doi.org/10.1148/radiol.2016152244.

    Article  PubMed  Google Scholar 

  45. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, Pachicano M, Joe E, Nelson AR, D’Orazio LM, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Reiman EM, Caselli RJ, et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature. 2020;581(7806):71–6. https://doi.org/10.1038/s41586-020-2247-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zimmermann PA, Knot HJ, Stevenson AS, Nelson MT. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circ Res. 1997;81(6):996–1004. https://doi.org/10.1161/01.res.81.6.996.

    Article  CAS  PubMed  Google Scholar 

  47. Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin Sci (Lond). 2016;130(20):1807–22. https://doi.org/10.1042/CS20160397.

    Article  CAS  Google Scholar 

  48. Stauber WT, Ong SH, McCuskey RS. Selective extravascular escape of albumin into the cerebral cortex of the diabetic rat. Diabetes. 1981;30(6):500–3. https://doi.org/10.2337/diab.30.6.500.

    Article  CAS  PubMed  Google Scholar 

  49. Wessels AM, Rombouts SA, Simsek S, Kuijer JP, Kostense PJ, Barkhof F, et al. Microvascular disease in type 1 diabetes alters brain activation: a functional magnetic resonance imaging study. Diabetes. 2006;55(2):334–40. https://doi.org/10.2337/diabetes.55.02.06.db05-0680.

    Article  CAS  PubMed  Google Scholar 

  50. Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, Kolpakov MA, Bashkirova YV, Sabri AK, Persidsky Y. Hyperglycemia-driven Neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56(3):1883–96. https://doi.org/10.1007/s12035-018-1195-5.

    Article  CAS  PubMed  Google Scholar 

  51. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, Song L, Hanlon D, Tan Hehir CA, Baker D, Blennow K, Hansson O. Plasma beta-amyloid in Alzheimer's disease and vascular disease. Sci Rep. 2016;6:26801. https://doi.org/10.1038/srep26801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Risacher SL, Fandos N, Romero J, Sherriff I, Pesini P, Saykin AJ, et al. Plasma amyloid beta levels are associated with cerebral amyloid and tau deposition. Alzheimers Dement (Amst). 2019;11:510–9. https://doi.org/10.1016/j.dadm.2019.05.007.

    Article  Google Scholar 

  53. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, et al. High performance plasma amyloid-beta biomarkers for Alzheimer's disease. Nature. 2018;554(7691):249–54. https://doi.org/10.1038/nature25456.

    Article  CAS  PubMed  Google Scholar 

  54. Samieri C, Perier MC, Gaye B, Proust-Lima C, Helmer C, Dartigues JF, Berr C, Tzourio C, Empana JP. Association of Cardiovascular Health Level in older age with cognitive decline and incident dementia. JAMA. 2018;320(7):657–64. https://doi.org/10.1001/jama.2018.11499.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen H, Du Y, Liu S, Ge B, Ji Y, Huang G. Association between serum cholesterol levels and Alzheimer's disease in China: a case-control study. Int J Food Sci Nutr. 2019;70(4):405–11. https://doi.org/10.1080/09637486.2018.1508426.

    Article  CAS  PubMed  Google Scholar 

  56. An Y, Zhang X, Wang Y, Wang Y, Liu W, Wang T, Qin Z, Xiao R. Longitudinal and nonlinear relations of dietary and serum cholesterol in midlife with cognitive decline: results from EMCOA study. Mol Neurodegener. 2019;14(1):51. https://doi.org/10.1186/s13024-019-0353-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Power MC, Rawlings A, Sharrett AR, Bandeen-Roche K, Coresh J, Ballantyne CM, Pokharel Y, Michos ED, Penman A, Alonso A, Knopman D, Mosley TH, Gottesman RF. Association of midlife lipids with 20-year cognitive change: a cohort study. Alzheimers Dement. 2018;14(2):167–77. https://doi.org/10.1016/j.jalz.2017.07.757.

    Article  PubMed  Google Scholar 

  58. Matsubara E, Sekijima Y, Tokuda T, Urakami K, Amari M, Shizuka-Ikeda M, Tomidokoro Y, Ikeda M, Kawarabayashi T, Harigaya Y, Ikeda SI, Murakami T, Abe K, Otomo E, Hirai S, Frangione B, Ghiso J, Shoji M. Soluble Abeta homeostasis in AD and DS: impairment of anti-amyloidogenic protection by lipoproteins. Neurobiol Aging. 2004;25(7):833–41. https://doi.org/10.1016/j.neurobiolaging.2003.10.004.

    Article  CAS  PubMed  Google Scholar 

  59. Mamo JC, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. Plasma lipoprotein beta-amyloid in subjects with Alzheimer's disease or mild cognitive impairment. Ann Clin Biochem. 2008;45(Pt 4):395–403. https://doi.org/10.1258/acb.2008.007214.

    Article  CAS  PubMed  Google Scholar 

  60. Galloway S, Takechi R, Pallebage-Gamarallage MM, Dhaliwal SS, Mamo JC. Amyloid-beta colocalizes with apolipoprotein B in absorptive cells of the small intestine. Lipids Health Dis. 2009;8:46. https://doi.org/10.1186/1476-511X-8-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Galloway S, Jian L, Johnsen R, Chew S, Mamo JC. beta-amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J Nutr Biochem 2007;18(4):279–284. 10.1016/j.jnutbio.2006.07.003.

  62. Takechi R, Galloway S, Pallebage-Gamarallage M, Wellington C, Johnsen R, Mamo JC. Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with amyloid plaques in APP/PS1 transgenic mice. Histochem Cell Biol. 2009;131(5):661–6. https://doi.org/10.1007/s00418-009-0567-3.

    Article  CAS  PubMed  Google Scholar 

  63. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. 2007;13(9):1029–31. https://doi.org/10.1038/nm1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sagare AP, Deane R, Zetterberg H, Wallin A, Blennow K, Zlokovic BV. Impaired lipoprotein receptor-mediated peripheral binding of plasma amyloid-beta is an early biomarker for mild cognitive impairment preceding Alzheimer's disease. J Alzheimers Dis. 2011;24(1):25–34. https://doi.org/10.3233/JAD-2010-101248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liang F, Jia J, Wang S, Qin W, Liu G. Decreased plasma levels of soluble low density lipoprotein receptor-related protein-1 (sLRP) and the soluble form of the receptor for advanced glycation end products (sRAGE) in the clinical diagnosis of Alzheimer's disease. J Clin Neurosci. 2013;20(3):357–61. https://doi.org/10.1016/j.jocn.2012.06.005.

    Article  CAS  PubMed  Google Scholar 

  66. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–13. https://doi.org/10.1038/nm890.

    Article  CAS  PubMed  Google Scholar 

  67. Maahs DM, Ogden LG, Dabelea D, Snell-Bergeon JK, Daniels SR, Hamman RF, Rewers M. Association of glycaemia with lipids in adults with type 1 diabetes: modification by dyslipidaemia medication. Diabetologia. 2010;53(12):2518–25. https://doi.org/10.1007/s00125-010-1886-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Macedoni M, Hovnik T, Plesnik E, Kotnik P, Bratina N, Battelino T, Groselj U. Metabolic control, ApoE genotypes, and dyslipidemia in children, adolescents and young adults with type 1 diabetes. Atherosclerosis. 2018;273:53–8. https://doi.org/10.1016/j.atherosclerosis.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  69. Gourgari E, Playford MP, Campia U, Dey AK, Cogen F, Gubb-Weiser S, Mete M, Desale S, Sampson M, Taylor A, Rother KI, Remaley AT, Mehta NN. Low cholesterol efflux capacity and abnormal lipoprotein particles in youth with type 1 diabetes: a case control study. Cardiovasc Diabetol. 2018;17(1):158. https://doi.org/10.1186/s12933-018-0802-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guy J, Ogden L, Wadwa RP, Hamman RF, Mayer-Davis EJ, Liese AD, D'Agostino R, Marcovina S, Dabelea D. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study. Diabetes Care. 2009;32(3):416–20. https://doi.org/10.2337/dc08-1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim SH, Jung IA, Jeon YJ, Cho WK, Cho KS, Park SH, Jung MH, Suh BK. Serum lipid profiles and glycemic control in adolescents and young adults with type 1 diabetes mellitus. Ann Pediatr Endocrinol Metab. 2014;19(4):191–6. https://doi.org/10.6065/apem.2014.19.4.191.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Verges B. Lipid disorders in type 1 diabetes. Diabetes Metab. 2009;35(5):353–60. https://doi.org/10.1016/j.diabet.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  73. Pallebage-Gamarallage MM, Lam V, Takechi R, Galloway S, Mamo JC. A diet enriched in docosahexanoic acid exacerbates brain parenchymal extravasation of apo B lipoproteins induced by chronic ingestion of saturated fats. Int J Vasc Med. 2012;2012:647689–8. https://doi.org/10.1155/2012/647689.

    Article  CAS  PubMed  Google Scholar 

  74. Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J. Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci. 2016;53(3):166–83. https://doi.org/10.3109/10408363.2015.1115820.

    Article  CAS  PubMed  Google Scholar 

  75. Pallebage-Gamarallage MM, Galloway S, Johnsen R, Jian L, Dhaliwal S, Mamo JC. The effect of exogenous cholesterol and lipid-modulating agents on enterocytic amyloid-beta abundance. Br J Nutr. 2009;101(3):340–7.

    Article  CAS  Google Scholar 

  76. Pallebage-Gamarallage MM, Takechi R, Lam V, Galloway S, Dhaliwal S, Mamo JC. Post-prandial lipid metabolism, lipid-modulating agents and cerebrovascular integrity: implications for dementia risk. Atheroscler Suppl. 2010;11(1):49–54. https://doi.org/10.1016/j.atherosclerosissup.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  77. Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood-brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40(1):45–52. https://doi.org/10.1111/1440-1681.12032.

    Article  CAS  PubMed  Google Scholar 

  78. Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Long-term probucol therapy continues to suppress markers of neurovascular inflammation in a dietary induced model of cerebral capillary dysfunction. Lipids Health Dis. 2014;13:91. https://doi.org/10.1186/1476-511X-13-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pallebage-Gamarallage MM, Galloway S, Takechi R, Dhaliwal S, Mamo JC. Probucol suppresses enterocytic accumulation of amyloid-beta induced by saturated fat and cholesterol feeding. Lipids. 2012;47(1):27–34. https://doi.org/10.1007/s11745-011-3595-4.

    Article  CAS  PubMed  Google Scholar 

  80. Leung SS, Forbes JM, Borg DJ. Receptor for advanced glycation end products (RAGE) in type 1 diabetes pathogenesis. Curr Diab Rep. 2016;16(10):100. https://doi.org/10.1007/s11892-016-0782-y.

    Article  CAS  PubMed  Google Scholar 

  81. Momeni Z, Neapetung J, Pacholko A, Kiir TAB, Yamamoto Y, Bekar LK, Campanucci VA. Hyperglycemia induces RAGE-dependent hippocampal spatial memory impairments. Physiol Behav. 2021;229:113287. https://doi.org/10.1016/j.physbeh.2020.113287.

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Chen F, Du YF, Long Y, Reed MN, Hu M, et al. Targeted inhibition of RAGE reduces amyloid-beta influx across the blood-brain barrier and improves cognitive deficits in db/db mice. Neuropharmacology. 2018;131:143–53. https://doi.org/10.1016/j.neuropharm.2017.12.026.

    Article  CAS  PubMed  Google Scholar 

  83. Femminella GD, Frangou E, Love SB, Busza G, Holmes C, Ritchie C, Lawrence R, McFarlane B, Tadros G, Ridha BH, Bannister C, Walker Z, Archer H, Coulthard E, Underwood BR, Prasanna A, Koranteng P, Karim S, Junaid K, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer's disease: study protocol for a randomised controlled trial (ELAD study). Trials. 2019;20(1):191. https://doi.org/10.1186/s13063-019-3259-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kelly P, McClean PL, Ackermann M, Konerding MA, Holscher C, Mitchell CA. Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with Liraglutide. Microcirculation. 2015;22(2):133–45. https://doi.org/10.1111/micc.12186.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

JP, RW, HA, VL, and RT contributed to the conceptualisation, writing and submission of the manuscript. The work was supported by Hunter Medical Research Institute Project Grant. VL and RT are supported by National Health and Medical Research Council of Australia. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryu Takechi.

Additional information

Guest Editor: Yijun Pan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickering, J., Wong, R., Al-Salami, H. et al. Cognitive Deficits in Type-1 Diabetes: Aspects of Glucose, Cerebrovascular and Amyloid Involvement. Pharm Res 38, 1477–1484 (2021). https://doi.org/10.1007/s11095-021-03100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03100-1

Key Words

Navigation