Skip to main content
Log in

rbcL, a potential candidate DNA barcode loci for aconites: conservation of himalayan aconites

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Aconitum heterophyllum Wall. ex Royle and Aconitum balfourii Stapf, are two highly important, threatened medicinal plants of the Indian Himalayan Region. Root-tubers of Aconites have occupied an important place in Indian pharmacopoeia from very ancient times. India is a hub of the wild-collected medicinal herbs industry in Asia and these two aconites are known to have been heavily traded from the region in illicit manner. Prosecution of these illegal trading crimes is hampered by lack of pharma-forensic expertise and tools.

Methods and results

Present study was conducted to evaluate the discriminatory potential of rbcL, a Chloroplast based DNA barcode marker for the authentication of these two Himalayan Aconites. Fresh plant samples were collected from their natural distributional range as well as raw materials were procured from herbal market and a total of 32 sequences were generated for the rbcL region. Analysis demonstrated that rbcL region can successfully be used for authentication and importantly, both the aconites, were successfully discriminated by rbcL locus with high bootstrap support (> 50%).

Conclusion

Molecular markers could certainly be relied upon morphological and chemical markers being tissue specific, having a higher discriminatory power and not age dependent. Phylogenetic analysis using Maximum Likelihood Method revealed that the rbcL gene could successfully discriminate Himalayan Aconites to species level and have potential to be used in pharma-forensic applications as well as to curb illicit trade of these invaluable medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The sequence data is available in NCBI GenBank.

References

  1. Chaudhary L, Rao R (1998) Notes on the genus Aconitum L. (Ranunculaceae) in North-West Himalaya (India). Feddes Repertorium 109(7–8):527–537. https://doi.org/10.1002/fedr.19981090708

    Article  Google Scholar 

  2. Stapf O (1905) The aconites of India: a monograph. Ann Roy Bot Gard Calcutta 10(2):161

    Google Scholar 

  3. POWO (2017) Kew Science Plants of the World online http://www.plantsoftheworldonline.org/. Accessed 19 January 2021

  4. Singh B, Chauhan R, Vashistha R, Nautiyal M, Prasad P (2012) Ecological features of Aconitum balfourii (Bruhl) Muk - an endangered medicinal plant in the northwest Himalaya. J Forestry Res 23(1):145–150. https://doi.org/10.1007/s11676-012-0245

    Article  Google Scholar 

  5. Agnihotri P, Husain D, Husain T (2015) Assessment of diversity, endemism and distribution of the genus Aconitum Linnaeus (Ranunculaceae) in India. Pleione 9(1):95–102

    Google Scholar 

  6. Chakrabarti L, Varshney V (2001) Trading in contraband. Down to Earth 9: 27–41.https://www.downtoearth.org.in/coverage/trading-in-contraband--38700

  7. Ji Y, Liu C, Yang J, Jin L, Yang Z, Yang J (2020) Ultra-barcoding discovers a cryptic species in Paris yunnanensis (Melanthiaceae), a medicinally important plant. Front Plant Sci 11:411. https://doi.org/10.3389/fpls.2020.00411

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bell D, Long DG, Forrest AD, Hollingsworth ML, Blom HH, Hollingsworth P (2012) DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species. Mol Ecol Resour 12(1):36–47. https://doi.org/10.1111/j.1755-0998.2011.03053.x

    Article  CAS  PubMed  Google Scholar 

  9. Heckenhauer J, Abu Salim K, Chase MW, Dexter KG, Pennington RT, Tan S, Kaye ME, Samuel R (2017) Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo). PLoS ONE 12(10):e0185861. https://doi.org/10.1371/journal.pone.0185861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim HM, Oh SH, Bhandari GS, Kim CS, Park CW (2014) DNA barcoding of Orchidaceae in Korea. Mol Ecol Resour 14(3):499–507. https://doi.org/10.1111/1755-0998.12207

    Article  CAS  PubMed  Google Scholar 

  11. Gere J, Yessoufou K, Daru BH, Mankga L, Maurin O, van der Bank M (2013) Incorporating trnH-psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys 365(1):129–147. https://doi.org/10.3897/zookeys.365.5728

    Article  Google Scholar 

  12. Rajaram MC, Yong CSY, Gansau JA, Go R (2019) DNA barcoding of endangered Paphiopedilum species (Orchidaceae) of Peninsular Malaysia. Phytotaxa 387(2):94–104. https://doi.org/10.11646/phytotaxa.387.2.2

    Article  Google Scholar 

  13. Gogoi B, Bhau BS (2018) DNA barcoding of the genus Nepenthes (Pitcher plant): a preliminary assessment towards its identification. BMC Plant Biol 18(1):153. https://doi.org/10.1186/s12870-018-1375-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. PNAS 105:2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu M, Li XW, Liao BS, Luo L, Ren YY (2019) Species identification of poisonous medicinal plant using DNA barcoding. Chin J Nat Med 17(8):585–590. https://doi.org/10.1016/s1875-5364(19)30060-3

    Article  PubMed  Google Scholar 

  16. Malik S, Priya A, Babbar S (2018) Employing barcoding markers to authenticate selected endangered medicinal plants traded in Indian markets. Physiol Mol Biol Plants 25:327–337. https://doi.org/10.1007/s12298-018-0610-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Udhayasankar M, Vaishnavi M, Sowmiya K, Gajalalakshmi R, Chandra Mohan A (2017) DNA Barcode of Indian Medicinal Plant Anethum Graveolens L by MatK Gene. Int j res appl sci eng technol 5(7): 670- 676. https://www.ijraset.com/fileserve.php?FID=8856

  18. Little D (2014) Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 57(9):513–516. https://doi.org/10.1139/gen-2014-0130

    Article  CAS  PubMed  Google Scholar 

  19. Mahadani P, Ghosh SK (2013) DNA Barcoding: A tool for species identification from herbal juices. DNA Barcodes. https://doi.org/10.2478/dna-2013-0002

  20. Newmaster S, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11:222. https://doi.org/10.1186/1741-7015-11-222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seethapathy GS, Ganesh D, Kumar JUS, Senthilkumar U, Newmaster SG, Ragupathy S, Shaanker RU, Ravikanth G (2014) Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Legal Med 129(4):693–700. https://doi.org/10.1007/s00414-014-1120-z

    Article  PubMed  Google Scholar 

  22. He T, Jiao L, Yu M, Guo J, Jiang X, Yin Y (2018) DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches. Holzforschung 73(3):277–285. https://doi.org/10.1515/hf-2018-0076

    Article  CAS  Google Scholar 

  23. Yu M, Jiao L, Guo J, Wiedenhoeft AC, He T, Jiang X, Yin Y (2017) DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta 246(6):1165–1176. https://doi.org/10.1007/s00425-017-2758-9

    Article  CAS  PubMed  Google Scholar 

  24. Dev SA, Muralidharan EM, Sujanapal P, Balasundaran M (2014) Identification of market adulterants in East Indian sandalwood using DNA barcoding. Ann For Sci 71:517–522. https://doi.org/10.1007/s13595-013-0354-0

    Article  Google Scholar 

  25. Hebert P, Cywinska A, Ball S, deWaard J (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. CBOL (2009) A DNA barcode for land plants. PNAS 106:12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  Google Scholar 

  27. Zhou J, Wang W, Liu M, Liu Z (2014) Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA-barcoding technique. Phcog Mag 10:385–390. https://doi.org/10.4103/0973-1296.141754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chandramohan A, Divya SR, Dhanarajan MS (2013) MatK gene-based molecular characterization of medicinal plant-Croton bonplandianum Baill. Int J Biosci Res 2:1–7

    Google Scholar 

  29. Parvathy VA, Swetha VP, Sheeja TE, Leela NK, Chempakam B, Sasikumar B (2014) DNA barcoding to detect chilli adulteration in traded Black pepper powder. Food Biotechnol 28(1):25–40. https://doi.org/10.1080/08905436.2013.870078

    Article  CAS  Google Scholar 

  30. Wu CT, Hsieh CC, Lin WC, Tang CY, Yang CH, Huang YC, Ko YJ (2013) Internal transcribed spacer sequencebased identification and phylogenic relationship of I-Tiao-Gung originating from Flemingia and Glycine (Leguminosae) in Taiwan. J Food Drug Anal 21:356–362. https://doi.org/10.1016/j.jfda.2013.08.002

    Article  CAS  Google Scholar 

  31. Al-Qurainy F, Khan S, Tarroum M, Al-Hemaid FM, Ali MA (2011) Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers. Genet Mol Res 10(4):2806–2816. https://doi.org/10.4238/2011.November.10.3

    Article  CAS  PubMed  Google Scholar 

  32. Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M (2007) A proposal for a standardized protocol to barcode all land plants. Taxon 56:295–299. https://doi.org/10.1002/tax.562004

    Article  Google Scholar 

  33. Kress W, Wurdack K, Zimmer E, Weigt L, Janzen D (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences USA 102:8369–8374

    Article  CAS  Google Scholar 

  34. Singh H, Parveen I, Raghuvanshi S, Babbar S (2012) The loci recommended as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res Notes 5:4. https://doi.org/10.1186/1756-0500-5-42

    Article  CAS  Google Scholar 

  35. Parveen I, Singh H, Raghuvanshi S, Pradhan U, Babbar S (2012) DNA barcoding of endangered Indian Paphiopedilum species. Mol Ecol Resour 12:82–90. https://doi.org/10.1111/j.1755-0998.2011.03071.x

    Article  CAS  PubMed  Google Scholar 

  36. Swetha V, Parvathy V, Sheeja T, Sasikumar B (2017) Authentication of Myristica fragrans Houtt. using DNA barcoding. Food Control 73:1010–1015. https://doi.org/10.1016/j.foodcont.2016.10.004

    Article  CAS  Google Scholar 

  37. Dayanandan S, Bawa K, Kesseli R (1997) Conservation of microsatellites among tropical trees (leguminosae). Am J Bot 84(12):1658–1663. https://doi.org/10.2307/2446463

    Article  CAS  PubMed  Google Scholar 

  38. Hall T (1999) BioEDIT: a user friendly biological sequence allignment editor and analysis programme for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  41. Rozas J (2009) DNA Sequence polymorphism analysis using DnaSP Bioinformatics for DNA sequence analysis. Methods Mol Biol Series 537:337–350. https://doi.org/10.1007/978-1-59745-251-9_17

    Article  CAS  Google Scholar 

  42. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mo Evol 16:111–120

    Article  CAS  Google Scholar 

  43. Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/bf01734359

    Article  CAS  PubMed  Google Scholar 

  44. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  45. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  46. DeSalle R, Egan M, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360:1905–1916. https://doi.org/10.1098/rstb.2005.1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pettengill J, Neel M (2010) An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus Agalinis (Orobanchaceae). Am J Bot 97:1391–1406. https://doi.org/10.3732/ajb.0900176

    Article  CAS  PubMed  Google Scholar 

  48. Hosein F, Austin N, Maharaj S, Johnson W, Rostant L, Ramdass A, Rampersad S (2017) Utility of DNA barcoding to identify rare endemic vascular plant species in Trinidad. Ecol Evol 7(18):7311–7333. https://doi.org/10.1002/ece3.3220

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meena R, Negi N, Uniyal N, Shamoon A, Bhandari M, Pandey S, Negi RK, Sharma S, Ginwal H (2020) Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3Biotech 10:534. https://doi.org/10.1007/s13205-020-02508-7

    Article  Google Scholar 

  50. He J, Yao M, Lyu R, Lin L, Liu H, Pei L, Yan S, Xie L, Cheng J (2019) Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae). Sci Rep 9:15285. https://doi.org/10.1038/s41598-019-51601-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Indian Council of Forestry Research and Education (ICFRE), Dehradun as a research project [FRI-619/Bot-81]. We thank to the Director Forest Research Institute, Dehradun for providing facility for laboratory and field works. The forest department of Uttarakhand, India also duly acknowledged for their assistance and permissions in surveys and sample collection from the forest area under their jurisdiction.

Funding

The work was financially supported by Indian Council of Forestry Research and Education (ICFRE) as research Project [FRI-619/Bot-81].

Author information

Authors and Affiliations

Authors

Contributions

RKN involved in project conceptualization, execution and manuscript writing; PN and R conducted the laboratory work; RKN and PN carried out sequence data analysis; R and RV conducted field visits for sample collection.

Corresponding author

Correspondence to Ranjana K. Negi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All necessary permissions were obtained for sample collection from concerned state forest department. Individuals in the photographs gave their permission for the photos to be published.

Consent to participate

All authors agreed to participate for submission of the research to the journal.

Consent for publication

All the authors have approved the manuscript for submission and publication in journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, R.K., Nautiyal, P., Bhatia, R. et al. rbcL, a potential candidate DNA barcode loci for aconites: conservation of himalayan aconites. Mol Biol Rep 48, 6769–6777 (2021). https://doi.org/10.1007/s11033-021-06675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06675-5

Keywords

Navigation