Skip to main content
Log in

Chromium speciation, mobility, and Cr(VI) retention–release processes in ultramafic rocks and Fe–Ni lateritic deposits of Greece

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Water contamination by geogenic hexavalent chromium is an emerging issue in areas developed on ultramafic rocks and their weathering products. In this study, samples of serpentinites, soil, and laterites were collected and analyzed for the levels of Cr species, distribution into phases of different mobility, mineralogy, Cr oxidation capacity, and leaching of Cr(VI). Total chromium (2176–21,929 mg kg−1) was mainly found in Cr spinels (~ 50% wt as Cr2O3) and Fe (hydr)oxides (2.5% wt). Total Cr(VI) contents (0.49–11.5 mg kg−1) increased from the serpentinites to the soil and lateritic deposit, i.e., during the advanced stages of weathering, which were accompanied by increased Cr mobility. Batch experiments of 500-h duration showed that Cr(VI) released in water at rates of 0.25–1.20 nM h–1. Rates were higher in water of pH 5.7 rather than pH 8.5, because more Cr(VI) was formed during the experimental period. Asbolane-type Mn oxides and Mn-bearing crystalline Fe oxides were responsible for Cr(III) oxidation. Most of the generated Cr(VI) (52–79% of total Cr(VI)) remained solid-bound by adsorption and/or precipitation processes. Because all samples had a self-capacity to oxidize Cr(III), it seems that retention processes will ultimately define the extent of geogenic Cr(VI) contamination of aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alevizos, G. (1997). Mineralogy, geochemistry and genesis of the sedimentary nickeliferous iron-ores from Lokris. Technical University of Crete.

    Google Scholar 

  • Apte, A. D., Tare, V., & Bose, P. (2006). Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Journal of Hazardous Materials, 128(2), 164–174.

    Article  CAS  Google Scholar 

  • Bartlett, R. J. (1991). Chromium cycling in soils and water: Links, gaps, and methods. Environmental Health Perspectives, 92, 17–24. https://doi.org/10.1289/ehp.919217

    Article  CAS  Google Scholar 

  • Bartlett, R. J., & Kimble, J. M. (1976). Behavior of chromium in soils: II. Hexavalent forms. Journal of Environmental Quality, 5(4), 383–386. https://doi.org/10.2134/jeq1976.00472425000500040010x

    Article  CAS  Google Scholar 

  • Bartlett, R., & James, B. (1979). Behavior of chromium in soils: III oxidation. Journal of Environmental Quality, 8(1), 31–35. https://doi.org/10.2134/jeq1979.00472425000800010008x

    Article  CAS  Google Scholar 

  • Becquer, T., Quantin, C., Sicot, M., & Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301(1), 251–261.

    Article  CAS  Google Scholar 

  • Bishop, M. E., Glasser, P., Dong, H., Arey, B., & Kovarik, L. (2014). Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica Et Cosmochimica Acta, 133, 186–203.

    Article  CAS  Google Scholar 

  • Chao, T. T., & Zhou, L. (1983). Extraction Techniques for Selective Dissolution of Amorphous Iron Oxides from Soils and Sediments. Soil Science Society of America Journal, 47(2) 225–232. https://doi.org/10.2136/sssaj1983.03615995004700020010x.

  • Chao, T. T. (1984) Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20(2) 101–135. https://doi.org/10.1016/0375-6742(84)90078-5

  • Caraballo, M. A., Michel, F. M., & Hochella, M. F. (2015). The rapid expansion of environmental mineralogy in unconventional ways: Beyond the accepted definition of a mineral, the latest technology, and using nature as our guide. American Mineralogist, 100(1), 14–25.

    Article  Google Scholar 

  • Chrysochoou, M., Theologou, E., Bompoti, N., Dermatas, D., & Panagiotakis, I. (2016). Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Current Pollution Reports, 2(4), 224–235. https://doi.org/10.1007/s40726-016-0044-2

    Article  CAS  Google Scholar 

  • Chukhrov, F. V, Gorshkov, A. I., Vitovskaya, I. V, Drits, V. A., & Sivtsov, A. V. (1982). On the Nature of Co-Ni Asbolane; a Component of Some Supergene Ores BT - Ore Genesis. In G. C. Amstutz, G. Frenzel, C. Kluth, G. Moh, A. Wauschkuhn, R. A. Zimmermann, & A. El Goresy (Eds.), Ore Genesis (pp. 230–239). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-68344-2_24

  • Costa, M., & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 36(2), 155–163. https://doi.org/10.1080/10408440500534032

    Article  CAS  Google Scholar 

  • Dai, R., Liu, J., Yu, C., Sun, R., Lan, Y., & Mao, J.-D. (2009). A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere, 76(4), 536–541.

    Article  CAS  Google Scholar 

  • Davidson, C. M. (2013). Methods for the Determination of Heavy Metals and Metalloids in Soils BT - Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. In B. J. Alloway (Ed.), (pp. 97–140). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_4.

  • Dermatas, D., Mpouras, T., Chrysochoou, M., Panagiotakis, I., Vatseris, C., Linardos, N., et al. (2015). Origin and concentration profile of chromium in a Greek aquifer. Journal of Hazardous Materials, 281, 35–46.

    Article  CAS  Google Scholar 

  • Eary, L. E., & Rai, D. (1987). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science & Technology, 21(12), 1187–1193. https://doi.org/10.1021/es00165a005

    Article  Google Scholar 

  • Economou-Eliopoulos, M., Megremi, I., Vasilatos, C., Frei, R., & Mpourodimos, I. (2017). Geochemical constraints on the sources of Cr(VI) contamination in waters of Messapia (Central Evia) Basin. Applied Geochemistry, 84, 13–25.

    Article  CAS  Google Scholar 

  • Eliopoulos, D. G., & Economou-Eliopoulos, M. (2000). Geochemical and mineralogical characteristics of Fe–Ni- and bauxitic-laterite deposits of Greece. Ore Geology Reviews, 16(1), 41–58.

    Article  Google Scholar 

  • Eliopoulos, D. G., Economou-Eliopoulos, M., Apostolikas, A., & Golightly, J. P. (2012). Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geology Reviews, 48, 413–427.

    Article  Google Scholar 

  • Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Ambrosi, J.-P., et al. (2009a). Synchrotron-based speciation of chromium in an Oxisol from New Caledonia: Importance of secondary Fe-oxyhydroxides. American Mineralogist, 94(5–6), 710–719. https://doi.org/10.2138/am.2009.3073

    Article  CAS  Google Scholar 

  • Fandeur, D., Juillot, F., Morin, G., Olivi, L., Cognigni, A., Webb, S. M., et al. (2009b). XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia. Environmental Science & Technology, 43(19), 7384–7390. https://doi.org/10.1021/es900498r

    Article  CAS  Google Scholar 

  • Fendorf, S. E. (1995). Surface reactions of chromium in soils and waters. Geoderma, 67(1), 55–71.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., Fendorf, M., Sparks, D. L., & Gronsky, R. (1992). Inhibitory mechanisms of Cr(III) oxidation by δ-MnO2. Journal of Colloid and Interface Science, 153(1), 37–54.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., & Zasoski, R. J. (1992). Chromium(III) oxidation by delta-manganese oxide (MnO2). 1. Characterization. Environmental Science & Technology, 26(1), 79–85.

    Article  CAS  Google Scholar 

  • Frei, R., Poiré, D., & Frei, K. M. (2014). Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): A chromium stable isotope perspective. Chemical Geology, 381, 110–124.

    Article  CAS  Google Scholar 

  • Gamaletsos, P. N., Kalatha, S., Godelitsas, A., Economou-Eliopoulos, M., Göttlicher, J., & Steininger, R. (2018). Arsenic distribution and speciation in the bauxitic Fe-Ni-laterite ore deposit of the Patitira mine, Lokris area (Greece). Journal of Geochemical Exploration, 194, 189–197.

    Article  CAS  Google Scholar 

  • Garnier, J., Quantin, C., Guimarães, E., Garg, V. K., Martins, E. S., & Becquer, T. (2009). Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma, 151(3), 204–214.

    Article  CAS  Google Scholar 

  • Garnier, J., Quantin, C., Martins, E. S., & Becquer, T. (2006). Solid speciation and availability of chromium in ultramafic soils from Niquelândia, Brazil. Journal of Geochemical Exploration, 88(1), 206–209.

    Article  CAS  Google Scholar 

  • Garnier, J., Quantin, C., Guimarães, E. M., Vantelon, D., Montargès-Pelletier, E., & Becquer, T. (2013). Cr(VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: The case of Niquelândia, Brazil. Geoderma. https://doi.org/10.1016/j.geoderma.2012.08.031

    Article  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: A review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6), 451–467.

    Article  CAS  Google Scholar 

  • Hausladen, D. M., Alexander-Ozinskas, A., McClain, C., & Fendorf, S. (2018). Hexavalent chromium sources and distribution in California groundwater. Environmental Science & Technology, 52(15), 8242–8251. https://doi.org/10.1021/acs.est.7b06627

    Article  CAS  Google Scholar 

  • Hausladen, D. M., & Fendorf, S. (2017). Hexavalent chromium generation within naturally structured soils and sediments. Environmental Science & Technology, 51(4), 2058–2067. https://doi.org/10.1021/acs.est.6b04039

    Article  CAS  Google Scholar 

  • Hunt, C. P., Singer, M. J., Kletetschka, G., TenPas, J., & Verosub, K. L. (1995). Effect of citratebicarbonate- dithionite treatment on fine-grained magnetite and maghemite. Earth and Planetary Science Letters, 130(1–4), 87–94. https://doi.org/10.1016/0012-821X(94)00256-X.

  • Hochella, M. F., Lower, S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., & Twining, B. S. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science. https://doi.org/10.1126/science.1141134

    Article  Google Scholar 

  • Hseu, Z.-Y., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 327, 97–106.

    Article  CAS  Google Scholar 

  • Izbicki, J. A., Wright, M. T., Seymour, W. A., McCleskey, R. B., Fram, M. S., Belitz, K., & Esser, B. K. (2015). Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Applied Geochemistry, 63, 203–217.

    Article  CAS  Google Scholar 

  • James, B. R. (1994). Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue. Journal of Environmental Quality, 23(2), 227–233. https://doi.org/10.2134/jeq1994.00472425002300020002x

    Article  CAS  Google Scholar 

  • James, B. R., & Bartlett, R. J. (1983). Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. Journal of Environmental Quality, 12(2), 177–181.

    Article  CAS  Google Scholar 

  • James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1995). Hexavalent chromium extraction from soils: A comparison of five methods. Environmental Science & Technology, 29(9), 2377–2381. https://doi.org/10.1021/es00009a033

    Article  CAS  Google Scholar 

  • Jiang, J., Xu, R., Wang, Y., & Zhao, A. (2008). The mechanism of chromate sorption by three variable charge soils. Chemosphere, 71(8), 1469–1475. https://doi.org/10.1016/j.chemosphere.2007.12.012

  • Johnston, C. P., & Chrysochoou, M. (2014). Mechanisms of chromate adsorption on hematite. Geochimica Et Cosmochimica Acta, 138, 146–157.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace Elements in Soils and Plants (4th ed.). CRC Press. https://doi.org/10.1201/b10158

  • Kalatha, S., & Economou-Eliopoulos, M. (2015). Framboidal pyrite and bacterio-morphic goethite at transitional zones between Fe–Ni-laterites and limestones: Evidence from Lokris, Greece. Ore Geology Reviews, 65, 413–425.

    Article  Google Scholar 

  • Kalatha, S., Perraki, M., Economou-Eliopoulos, M., & Mitsis, I. (2017). On the Origin of Bastnaesite-(La, Nd, Y) in the Nissi (Patitira) Bauxite Laterite Deposit, Lokris, Greece. Minerals. https://doi.org/10.3390/min7030045

    Article  Google Scholar 

  • Kaprara, E., Kazakis, N., Simeonidis, K., Coles, S., Zouboulis, A. I., Samaras, P., & Mitrakas, M. (2015). Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. Journal of Hazardous Materials, 281, 2–11.

    Article  CAS  Google Scholar 

  • Kazakis, N., Kantiranis, N., Voudouris, K. S., Mitrakas, M., Kaprara, E., & Pavlou, A. (2015). Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Science of the Total Environment, 514, 224–238.

    Article  CAS  Google Scholar 

  • Kierczak, J., Pędziwiatr, A., Waroszewski, J., & Modelska, M. (2016). Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma, 268, 78–91.

    Article  CAS  Google Scholar 

  • Kierczak, J., Pietranik, A., & Pędziwiatr, A. (2020). Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.142620

    Article  Google Scholar 

  • Kuhnel, R. A., Roorda, H. J., & Steensma, J. J. (1975). The crystallinity of minerals; a new variable in pedogenetic processes; a study of goethite and associated silicates in laterites. Clays and Clay Minerals, 23(5), 349–354.

    Article  Google Scholar 

  • Lilli, M. A., Nikolaidis, N. P., Karatzas, G. P., & Kalogerakis, N. (2019). Identifying the controlling mechanism of geogenic origin chromium release in soils. Journal of Hazardous Materials, 366, 169–176.

    Article  CAS  Google Scholar 

  • Manceau, A., Llorca, S., & Calas, G. (1987). Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica Et Cosmochimica Acta, 51(1), 105–113.

    Article  CAS  Google Scholar 

  • Manning, A. H., Mills, C. T., Morrison, J. M., & Ball, L. B. (2015). Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Applied Geochemistry, 62, 186–199.

    Article  CAS  Google Scholar 

  • Maratos, G. (1965). Geological map of Greece, Sheet Atalanti, scale 1:50.000. Institute of Geology and Mineral Exploration (IGME), Greece.

  • McClain, C. N., Fendorf, S., Johnson, S. T., Menendez, A., & Maher, K. (2019). Lithologic and redox controls on hexavalent chromium in vadose zone sediments of California’s Central Valley. Geochimica Et Cosmochimica Acta, 265, 478–494.

    Article  CAS  Google Scholar 

  • McLean, J., & Bledsoe, B. (1992). Behavior of metals in soils. U.S. Environmental Protection Agency, Washington, D.C., USA, EPA/540/S-92/018.

  • Megremi, I., Vasilatos, C., Vassilakis, E., & Economou-Eliopoulos, M. (2019). Spatial diversity of Cr distribution in soil and groundwater sites in relation with land use management in a Mediterranean region: The case of C. Evia and Assopos-Thiva Basins. Greece. Science of the Total Environment, 651, 656–667.

    Article  CAS  Google Scholar 

  • Mills, C. T., & Goldhaber, M. B. (2012). Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.06.054

    Article  Google Scholar 

  • Mills, C. T., Morrison, J. M., Goldhaber, M. B., & Ellefsen, K. J. (2011). Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: A potential source of geogenic Cr(VI) to groundwater. Applied Geochemistry, 26(8), 1488–1501.

    Article  CAS  Google Scholar 

  • Moraetis, D., Nikolaidis, N. P., Karatzas, G. P., Dokou, Z., Kalogerakis, N., Winkel, L. H. E., & Palaiogianni-Bellou, A. (2012). Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. Applied Geochemistry, 27(6), 1170–1178.

    Article  CAS  Google Scholar 

  • Morrison, J. M., Goldhaber, M. B., Ellefsen, K. J., & Mills, C. T. (2011). Cluster analysis of a regional-scale soil geochemical dataset in northern California. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2011.03.041

    Article  Google Scholar 

  • Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104(16), 6544–6549. https://doi.org/10.1073/pnas.0701085104

    Article  CAS  Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97–126. https://doi.org/10.2747/0020-6814.46.2.97

    Article  Google Scholar 

  • Papanikolaou, D. (2009). Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos, 108(1), 262–280.

    Article  CAS  Google Scholar 

  • Papazotos, P., Vasileiou, E., & Perraki, M. (2019). The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, central Euboea Greece. Environmental Monitoring and Assessment, 191(5), 317. https://doi.org/10.1007/s10661-019-7430-3

    Article  CAS  Google Scholar 

  • Poulton, S. W., & Canfield, D. E (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214(3–4), 209–221. https://doi.org/10.1016/j.chemgeo.2004.09.003.

  • Pyrgaki, K, Argyraki, A., Kelepertzis, E., Paraskevopoulou, V., Botsou, F., Dassenakis, E., et al. (2016). Occurence of hexavalent chromium in the ophiolite related aquifers of Loutraki and Schinos areas. Bulletin of the Geological Society of Greece; Vol 50, No 4 (2016): 14th International Conference of the G.S.G. https://doi.org/10.12681/bgsg.14292

  • Pyrgaki, K., Argyraki, A., Botsou, F., Kelepertzis, E., Paraskevopoulou, V., Karavoltsos, S., et al. (2021). Hydrogeochemical investigation of Cr in the ultramafic rock-related water bodies of Loutraki basin, Northeast Peloponnese, Greece. Environmental Earth Sciences, 80(2), 62. https://doi.org/10.1007/s12665-020-09342-3

    Article  CAS  Google Scholar 

  • Pyrgaki, K., Argyraki, A., Kelepertzis, E., Botsou, F., Megremi, I., Karavoltsos, S., et al. (2020). A DPSIR approach to selected Cr(VI) impacted groundwater bodies of central Greece. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-020-02889-8

    Article  Google Scholar 

  • Rai, D., Eary, L. E., & Zachara, J. M. (1989). Environmental chemistry of chromium. Science of the Total Environment, 86(1), 15–23.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Ok, Y. S., & Oze, C. (2013). Cr(VI) Formation related to Cr(III)-Muscovite and Birnessite interactions in ultramafic environments. Environmental Science & Technology, 47(17), 9722–9729. https://doi.org/10.1021/es4015025

    Article  CAS  Google Scholar 

  • Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., & Becquer, T. (2013). Potentially toxic metals in ultramafic mining materials: Identification of the main bearing and reactive phases. Geoderma, 192, 111–119.

    Article  CAS  Google Scholar 

  • Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782–1806. https://doi.org/10.1080/00958972.2011.583646

    Article  CAS  Google Scholar 

  • Samouhos, M., Godelitsas, A., Nomikou, C., Taxiarchou, M., Tsakiridis, P., Zavašnik, J., et al. (2019). New insights into nanomineralogy and geochemistry of Ni-laterite ores from central Greece (Larymna and Evia deposits). Geochemistry, 79(2), 268–279.

    Article  CAS  Google Scholar 

  • Shi, Z., Peng, S., Lin, X., Liang, Y., Lee, S.-Z., & Allen, H. E. (2020). Predicting Cr(vi) adsorption on soils: The role of the competition of soil organic matter. Environmental Science: Processes Impacts, 22(1), 95–104.

    CAS  Google Scholar 

  • Skarpelis, N. (2006). Lateritization processes of ultramafic rocks in Cretaceous times: The fossil weathering crusts of mainland Greece. Journal of Geochemical Exploration, 88(1), 325–328.

    Article  CAS  Google Scholar 

  • Sun, H., Brocato, J., & Costa, M. (2015). Oral chromium exposure and toxicity. Current Environmental Health Reports, 2(3), 295–303. https://doi.org/10.1007/s40572-015-0054-z

    Article  CAS  Google Scholar 

  • Tessier, A. P. G. C., Campbell, P. G., & Bisson, M. J. A. C (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7) 844–851. https://doi.org/10.1021/ac50043a017.

  • U.S. EPA. (1996). Test Method 3060A: Alkaline digestion for hexavalent chromium. Hazardous Waste Test Methods / SW-846.

  • U.S. EPA. (2004). Test Method 9045D: Soil and Waste pH. Hazardous Waste Test Methods / SW-846.

  • Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.-C., Teitler, Y., & Karpoff, A. M. (2019). The relative distribution of critical (Sc, REE) and transition metals (Ni Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. Journal of Geochemical Exploration, 197, 93–113.

    Article  CAS  Google Scholar 

  • Vasileiou, E., Papazotos, P., Dimitrakopoulos, D., & Perraki, M. (2019). Expounding the origin of chromium in groundwater of the Sarigkiol basin, Western Macedonia, Greece: A cohesive statistical approach and hydrochemical study. Environmental Monitoring and Assessment, 191(8), 509. https://doi.org/10.1007/s10661-019-7655-1

    Article  CAS  Google Scholar 

  • Vithanage, M., Kumarathilaka, P., Oze, C., Karunatilake, S., Seneviratne, M., Hseu, Z.-Y., et al. (2019). Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 131, 104974.

    Article  CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Oze, C., Rajakaruna, N., & Dissanayake, C. B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186(6), 3415–3429. https://doi.org/10.1007/s10661-014-3626-8

    Article  CAS  Google Scholar 

  • Weaver, R. M., Hochella, M. F., & Ilton, E. S. (2002). Dynamic processes occurring at the CrIIIaq-manganite (γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochimica Et Cosmochimica Acta, 66(23), 4119–4132.

    Article  CAS  Google Scholar 

  • Wu, W.-C., Wang, S.-L., Tzou, Y.-M., Chen, J.-H., & Wang, M.-K. (2007). The adsorption and catalytic transformations of chromium on Mn substituted goethite. Applied Catalysis B: Environmental, 75(3–4), 272–280. https://doi.org/10.1016/j.apcatb.2007.04.026

    Article  CAS  Google Scholar 

  • Zoroddu, M. A., Aaseth, J., Crisponi, G., Medici, S., Peana, M., & Nurchi, V. M. (2019). The essential metals for humans: a brief overview. Journal of Inorganic Biochemistry, 195, 120–129. https://doi.org/10.1016/j.jinorgbio.2019.03.013.

Download references

Acknowledgements

The authors wish to thank Dr. Christos Anagnostou and Dr. Ilias Gerolymatos for their valuable field assistance and Dr. Efstratios Kelepertzis for a critical reading of the manuscript. Two anonymous reviewers are also thanked for their constructive comments and suggestions that improved the quality of the paper.

Funding

The present study was part of the Program “Excellence” (ARISTEIA – I/640) funded by General Secretariat for Research and Technology (GR) and the European Social Fund (OP Educational and Lifelong Learning, NSRF, 2007–2013).

Author information

Authors and Affiliations

Authors

Contributions

Fotini Botsou contributed to conceptualization, methodology, investigation, writing—original draft, writing—review and editing, and visualization. Eleni Koutsopoulou performed investigation, writing—original draft, writing—review and editing, and visualization. Amaryllis Andrioti performed investigation. Manos Dassenakis and Michael Scoullos contributed to resources and funding acquisition. Aristomenis Karageorgis contributed to conceptualization, investigation, and writing—review and editing.

Corresponding author

Correspondence to Fotini Botsou.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botsou, F., Koutsopoulou, E., Andrioti, A. et al. Chromium speciation, mobility, and Cr(VI) retention–release processes in ultramafic rocks and Fe–Ni lateritic deposits of Greece. Environ Geochem Health 44, 2815–2834 (2022). https://doi.org/10.1007/s10653-021-01078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01078-8

Keywords

Navigation