Skip to main content

Advertisement

Log in

Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Cadmium (Cd) contamination and soil salinity are the main environmental issues reducing crop productivity. This study aimed to examine the combined effects of salinity (NaCl) and Cd on the physiological and biochemical attributes of quinoa (Chenopodium quinoa Willd.). For this purpose, 30-day-old plants of quinoa genotype “Puno” were transplanted in Hoagland's nutrient solution containing diverse concentrations of Cd: 0, 50, 100, 200 µM Cd, and salinity: 0, 150, and 300 mM NaCl. Results demonstrated that plant growth, stomatal conductance, and pigment contents were significantly lower at all Cd concentrations than the control plants. Quinoa plants exhibited improved growth and tolerance against Cd when grown at a lower level of salinity (150 mM NaCl) combined with Cd. In contrast, the elevated concentration of salinity (300 mM NaCl) combined with Cd reduced shoot and root growth of experimental plants more than 50%. Combined application of salinity and Cd increased Na (25-fold), while lessened the Cd (twofold) and K (1.5-fold) uptake. A blend of high concentrations of Na and Cd caused overproduction of H2O2 (eightfold higher than control) contents and triggered lipid peroxidation. The activities of antioxidant enzymes: ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were 13, 12, 7 and ninefold higher than control to mitigate the oxidative stress. Due to restricted root to shoot translocation, and greater tolerance potential against Cd, the quinoa genotype, Puno, is suitable for phytostabilization of Cd in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data will be available as demanded.

References

  • Abbas, G., Amjad, M., Saqib, M., Murtaza, B., Asif Naeem, M., Shabbir, A., & Murtaza, G. (2021). Soil sodicity is more detrimental than salinity for quinoa (Chenopodium quinoa Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 207, 59–73.

    Article  CAS  Google Scholar 

  • Abbas, G., Chen, Y., Khan, F. Y., Feng, Y., Palta, J. A., & Siddique, K. H. (2018). Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy, 8(8), 155.

    Article  CAS  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Amjad, M., Iqbal, M. M., Abbas, G., Farooq, A. B. U., Naeem, M. A., Imran, M., Murtaza, B., Nadeem, M., & Jacobsen, S.-E. (2021). Assessment of cadmium and lead tolerance potential of quinoa (Chenopodium quinoa Willd) and its implications for phytoremediation and human health. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00826-0(0123456789

    Article  Google Scholar 

  • Anwar, H., Shahid, M., Natasha, Niazi, N. K., Khalid, S., Tariq, T. Z., Ahmad, S., Nadeem, M., & Abbas, G. (2021). Risk assessment of potentially toxic metal (loid) s in Vigna radiata L. under wastewater and freshwater irrigation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129124

  • Chai, M., Shi, F., Li, R., Liu, L., Liu, Y., & Liu, F. (2013). Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regulation, 71, 171–179.

    Article  CAS  Google Scholar 

  • Chen, H.-C., Zhang, S.-L., Wu, K.-J., Li, R., He, X.-R., He, D.-N., Huang, C., & Wei, H. (2020). The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2019.109790.

  • Cheng, M., Wang, A., Liu, Z., Gendall, A. R., Rochfort, S., & Tang, C. (2018). Sodium chloride decreases cadmium accumulation and changes the response of metabolites to cadmium stress in the halophyte Carpobrotus rossii. Annals of Botany, 122, 373–385.

    Article  CAS  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  • Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    Article  CAS  Google Scholar 

  • Hemeda, H. M., & Klein, B. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184–185.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular, California Agricultural Experiment Station, 347.

  • Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604–611.

    Article  CAS  Google Scholar 

  • Hu, Y., Hackl, H., & Schmidhalter, U. (2017). Comparative performance of spectral and thermographic properties of plants and physiological traits for phenotyping salinity tolerance of wheat cultivars under simulated field conditions. Functional Plant Biology, 44, 134–142.

    Article  CAS  Google Scholar 

  • Iftikhar, A., Abbas, G., Saqib, M., Shabbir, A., Amjad, M., Shahid, M., Ahmad, I., Iqbal, S., & Qaisrani, S. A. (2021). Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: A multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00937-8

    Article  Google Scholar 

  • Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Mahmood, Q., Tian, S., & Li, J. (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal Hazardous Materials, 154, 914–926.

    Article  CAS  Google Scholar 

  • Jacobsen, S. E., Liu, F., & Jensen, C. R. (2009). Does rootsourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulture, 122, 281–287.

    Article  CAS  Google Scholar 

  • Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.

    Article  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • López-Chuken, U., López-Domínguez, U., Parra-Saldivar, R., Moreno-Jiménez, E., Hinojosa-Reyes, L., Guzmán-Mar, J., & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced cadmium uptake in saline agriculture: Modeling cadmium uptake by maize and tobacco. International Journal of Environmental Science and Technology, 9, 69–77.

    Article  Google Scholar 

  • Manousaki, E., Kokkali, F., & Kalogerakis, N. (2009). Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). Journal of Chemical Technology & Biotechnology, 84, 877–883.

    Article  CAS  Google Scholar 

  • Mariem, W., Kilani, B. R., Benet, G., Abdelbasset, L., Stanley, L., Charlotte, P., Chedly, A., & Tahar, G. (2014). How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere, 117, 243–250.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd edn, 889 pp). Academic Press London.

  • Mei, X., Li, S., Li, Q., Yang, Y., Luo, X., He, B., Li, H., & Xu, Z. (2014). Sodium chloride salinity reduces Cd uptake by edible amaranth (Amaranthus mangostanus L.) via competition for Ca channels. Ecotoxicology and Environmental Safety, 105, 59–64.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Natasha, S. M., Farooq, A. B. U., Rabbani, F., Khalid, S., & Dumat, C. (2020). Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere, 125605. https://doi.org/10.1016/j.chemosphere.2019.125605.

  • Natasha, S. M., Sardar, A., Anwar, H., Khalid, S., Shah, S. H., Shah, A. H., & Bilal, M. (2021). Effect of co-application of wastewater and freshwater on the physiological properties and trace element content in Raphanus sativus: soil contamination and human health. Environmental Geochemistry and Health, 43(6), 2393–2406.

    Article  CAS  Google Scholar 

  • Nawaz, M. F., Gul, S., Tanvir, M. A., Akhtar, J., Chaudary, S., & Ahmad, I. (2016). Influence of NaCl-salinity on Pb-uptake behavior and growth of River Red gum tree (Eucalyptus camaldulensis Dehnh.). Turkish Journal of Agriculture and Forestry, 40, 425–432.

    Article  CAS  Google Scholar 

  • Parvez, S., Abbas, G., Shahid, M., Amjad, M., Hussain, M., Asad, S. A., Imran, M., & Naeem, M. A. (2020). Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicology and Environmental Safety, 187. https://doi.org/10.1016/j.ecoenv.2019.109814.

  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of salt-induced land degradation and restoration. Natural Resources Forum, 38, 282–295.

    Article  Google Scholar 

  • Qayyum, M. F., ur Rehman, M. Z., Ali, S., Rizwan, M., Naeem, A., Maqsood, M. A., Khalid, H., Rinklebe, J., & Ok, Y. S. (2017). Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere, 174, 515–523.

    Article  CAS  Google Scholar 

  • Rehman, S., Abbas, G., Shahid, M., Saqib, M., Farooq, A. B. U., Hussain, M., Murtaza, B., Amjad, M., Naeem, M. A., & Farooq, A. (2019). Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicology and Environmental Safety, 171, 146–153.

    Article  CAS  Google Scholar 

  • Riaz, F., Abbas, G., Saqib, M., Amjad, M., Farooq, A., Ahmad, S., Naeem, M. A., Umer, M., Khalid, M. S., & Ahmed, K. (2020). Comparative effect of salinity on growth, ionic and physiological attributes of two quinoa genotypes. Pakistan Journal of Agricultural Sciences, 57, 115–122.

    Google Scholar 

  • Shabala, S., Hariadi, Y., & Jacobsen, S.-E. (2013). Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 170, 906–914.

    Article  CAS  Google Scholar 

  • Shabir, R., Abbas, G., Saqib, M., Shahid, M., Shah, G. M., Akram, M., Niazi, N. K., Naeem, M. A., Hussain, M., & Ashraf, F. (2018). Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. International Journal of Phytoremediation, 20, 739–746.

    Article  CAS  Google Scholar 

  • Shahid, M. (2021). Effect of soil amendments on trace element-mediated oxidative stress in plants: Meta-analysis and mechanistic interpretations. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.124881

    Article  Google Scholar 

  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017a). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials, 325, 36–58.

    Article  CAS  Google Scholar 

  • Shahid, M., Rafiq, M., Niazi, N. K., Dumat, C., Shamshad, S., Khalid, S., & Bibi, I. (2017b). Arsenic accumulation and physiological attributes of spinach in the presence of amendments: An implication to reduce health risk. Environmental Science and Pollution Research, 24, 16097–16106.

    Article  CAS  Google Scholar 

  • Shanying, H., Xiaoe, Y., Zhenli, H., & Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere, 27, 421–438.

    Article  Google Scholar 

  • Souri, Z., Karimi, N., & de Oliveira, L. M. (2018). Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39, 1316–1327.

    Article  CAS  Google Scholar 

  • Steel, R., Torrie, J., & Dickey, D. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). New York.

    Google Scholar 

  • Wali, M., Fourati, E., Hmaeid, N., Ghabriche, R., Poschenrieder, C., Abdelly, C., & Ghnaya, T. (2015). NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environmental Science and Pollution Research, 22, 10769–10777.

    Article  CAS  Google Scholar 

  • Wali, M., Gunsè, B., Llugany, M., Corrales, I., Abdelly, C., Poschenrieder, C., & Ghnaya, T. (2016). High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. Planta, 244, 333–346.

    Article  CAS  Google Scholar 

  • Wang, M., Chen, S., Chen, L., & Wang, D. (2019). Saline stress modifies the effect of cadmium toxicity on soil archaeal communities. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2019.109431

    Article  Google Scholar 

  • Zhang, S., Ni, X., Arif, M., Zheng, J., Stubbs, A., & Li, C. (2020). NaCl improved Cd tolerance of the euhalophyte Suaeda glauca but not the recretohalophyte Limonium aureum. Plant and Soil, 449, 303–318.

    Article  CAS  Google Scholar 

  • Zhang, X., Gao, B., & Xia, H. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102–108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Researchers Supporting Project number (RSP-2021/407), King Saud University, Riyadh, Saudi Arabia for the support. The authors are equally indebted to COMSATS University Islamabad, Vehari Campus, for providing research facilities during the research work.

Funding

The authors are grateful to the Researchers Supporting Project number (RSP-2021/407), King Saud University, Riyadh, Saudi Arabia, for the support.

Author information

Authors and Affiliations

Authors

Contributions

GA, SA and GMS conceived the research idea. GA and SAA analyzed the data and wrote the manuscript. GA and NA accomplished the experimentation and plant analyses. AAG, MR, SA and MS reviewed and edited the manuscript.

Corresponding authors

Correspondence to Ghulam Abbas or Shafaqat Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdal, N., Abbas, G., Asad, S.A. et al. Salinity mitigates cadmium-induced phytotoxicity in quinoa (Chenopodium quinoa Willd.) by limiting the Cd uptake and improved responses to oxidative stress: implications for phytoremediation. Environ Geochem Health 45, 171–185 (2023). https://doi.org/10.1007/s10653-021-01082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01082-y

Keywords

Navigation