Skip to main content

Advertisement

Log in

Development and anatomical traits of black pine on an abandoned agricultural land compared to forested areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Global acreage of forested lands has increased in some countries. At least some of this increase is due to the natural conversion of abandoned agricultural lands into forests. However, little is known about how these new stands develop on abandoned agricultural lands in comparison with natural regeneration of existing forests. Specifically, knowledge of how black pine (Pinus nigra Arnold) naturally establishes and develops on abandoned agricultural lands is limited. In this study, we examined the density and growth of black pine saplings as well as some morphological and anatomical characteristics on an abandoned agricultural land (AAS). These data were compared with those observed in a naturally regenerated stand (NRS), and in a forest opening (FOS). The greatest sapling density was observed in the NRS site, while sapling growth and stem biomass were higher in AAS followed by NRS and FOS. Moreover, each study site exhibited site-specific morphological and anatomical traits in their saplings. Our findings showed that site treatments and overstory openness would both play crucial role for establishment and development of black pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

NA

References

  • Ahmed, K., Shahbaz, M., Qasim, A., & Long, W. (2015). The linkages between deforestation, energy and growth for environmental degradation in Pakistan. Ecological Indicators, 49, 95–103.

    Article  Google Scholar 

  • Alcantara, C., Kuemmerle, T., Prishchepov, A. V., & Radeloff, V. C. (2012). Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sensing of Environment, 124, 334–347.

    Article  Google Scholar 

  • Altunel, A. O., Akturk, E., & Altunel, T. (2020). Examining the PALSAR-2 Global forest/non-forest maps through Turkish afforestation practices. International Journal of Remote Sensing, 41, 6071–6088.

    Article  Google Scholar 

  • Atmış, E. (2020). Türkiye Orman Varlığıyla İlgili Değişimler ve Nedenleri. In: Ok K (ed) Orman Varlığımız ve Ormancılık Üretim Faaliyetleri. The Foresters’ Association of Turkey, pp 9–23.

  • Atmış, E., & Günşen, H. B. (2016). Kentleşmenin Türkiye ormancılığının dönüşümüne etkisi (1990–2010 dönemi). Journal of the Faculty of Forestry Istanbul University, 66(1), 16–29.

    Google Scholar 

  • Auty, D., Weiskittel, A. R., Achim, A., Moore, J. R., & Gardiner, B. A. (2012). Influence of early re-spacing on Sitka spruce branch structure. Annals of Forest Science, 69, 93–104.

    Article  Google Scholar 

  • Barnett, J., & Jeronimidis, G. (2003). Wood quality and ıts biological basis. CRC Press.

    Google Scholar 

  • Bebi, P., Seidl, R., Motta, R., et al. (2017). Changes of forest cover and disturbance regimes in the mountain forests of the Alps. Forest Ecology and Management, 388, 43–56.

    Article  CAS  Google Scholar 

  • Bogino, S., & Bravo, F. (2009). Climate and intraannual density fluctuations in Pinus pinaster subsp. mesogeensis in Spanish woodlands. Canadian Journal of Forest Research, 39, 1557–1565.

    Article  Google Scholar 

  • Bond, J., Donaldson, L., Hill, S., & Hitchcock, K. (2008). Safranine fluorescent staining of wood cell walls. Biotechnic and Histochemistry, 83, 161–171.

    Article  CAS  Google Scholar 

  • Bulut, A. (2018). Orman Koylerindeki Sosyoekonomik Degisimin Orman Alanlari Uzerine Olan Etkilerinin Belirlenmesi (Kastamonu Ili Ornegi). Dissertation, Kastamonu University (in Turkish with English Abstract).

  • Brown, C. L., Sommer, H. E. & Pienaar, S. L. V. (1995). The predominant role of the pith in the growth and development of internodes in Liquidambar styraciflua (Hamamelidaceae). I. Histological Basis of Compressive and Tensile Stresses in Developing Primary Tissues. American Journal of Botany, 82(6):769–776.

  • Campelo, F., Vieira, J., & Nabais, C. (2013). Tree-ring growth and intra-annual density fluctuations of Pinus pinaster responses to climate: Does size matter? Trees, 27, 763–772.

    Article  Google Scholar 

  • Daryaei, A., Sohrabi, H., & Puerta-Piñero, C. (2019). How does light availability affect the aboveground biomass allocation and leaf morphology of saplings in temperate mixed deciduous forests? New Forests, 50(3), 409–422.

    Article  Google Scholar 

  • Dassot, M., & Collet, C. (2020). Effects of different site preparation methods on the root development of planted Quercus petraea and Pinus nigra. New Forests, 52, 17–30.

    Article  Google Scholar 

  • de Luis, M., Novak, K., Raventós, J., Gričar, J., Prislan, P., & Čufar, K. (2011). Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. Forest Ecology and Management, 262(8), 1630–1638.

    Article  Google Scholar 

  • del Cerro Barja, A., Borja, M. L., Garcia, E. M. et al. (2009). Influence of stand density and soil treatment on the Spanish Black Pine (Pinus nigra Arn. ssp. Salzmannii) regeneration in Spain. Forest Systems 18(2): 167–180.

  • Dupouey, J. L., Dambrine, E., Laffite, J. D., & Moares, C. (2002). Irreversible impact of past land use on forest soils and biodiversity. Ecology, 83, 2978–2984.

    Article  Google Scholar 

  • Eler Ü, Genek A, Yıldırım K (1989) Karaçam (Pinus nigra Arnold.) Gençliklerinde Erken Boşaltma ve Seyreltmenin Fidan Büyümesi Üzerine Etkileri. OAE publication. Ankara, Turkey. 14pp.

  • FAO. (2016). Global Forest Resources Assessment 2015. U.N. Food and Agricultural Organization of the United Nations FAO Publication. Ronia, Italy.

  • Fengel, D. & Wegener, G. (1989). Wood: Chemical Ultrastructure Reactions. de Gruyter: Berlin, New York.

  • Flinn, K. M., & Vellend, M. (2005). Recovery of forest plant communities in post-agricultural landscapes. Frontiers in Ecology and the Environment, 3(5), 243–250.

    Article  Google Scholar 

  • Fonti, P., Heller, O., Cherubini, P., Rigling, A., & Arend, M. (2013). Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biology, 15, 210–219.

    Article  Google Scholar 

  • Franklin, G. L. (1945). Preparation of thin sections of synthetic resins and wood-resin composites and a new macerating method for wood. Nature, 155, 51.

    Article  Google Scholar 

  • Fritts, H. C. (1966). Growth-rings of trees: Their correlation with climate. Science, 154, 973–979.

    Article  CAS  Google Scholar 

  • Fritts, H. C. (2001). Tree-rings and climate. The Blackburn Press.

    Google Scholar 

  • Fritts, H. C., Vaganov, E. A., Sviderskaya, I. V., & Shashkin, A. V. (1991). Climatic variation and tree-ring structure in conifers: Empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Climate Research, 1, 97–116.

    Article  Google Scholar 

  • Gibson, L. J., Ashby, M. F., & Easterling, K. E. (1988). Structure and mechanics of the iris leaf. Journal of Materials Science, 23, 3041–3048.

    Article  Google Scholar 

  • Granda, E., Escudero, A., de la Cruz, M., & Valladares, F. (2012). Juvenile–adult tree associations in a continental Mediterranean ecosystem: No evidence for sustained and general facilitation at increased aridity. Journal of Vegetation Science, 23(1), 164–175.

    Article  Google Scholar 

  • IAWA. (1989). IAWA List of microscopic features for hardwood identification by an IAWA Committee. In: Wheeler EA, Baas P, Gasson PE (eds.). IAWA Bull, pp 219–332.

  • Kara, F., Loewenstein, E. F., & Brockway, D. G. (2017). Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture. Forest Systems, 26(1), 7.

    Article  Google Scholar 

  • Kara, F., & Topacoglu, O. (2018). Initial responses of containerized black pine (Pinus nigra Arnold) seedlings to leaf removal prior to out-planting. Baltic Forestry, 24(1), 117–122.

    Google Scholar 

  • Karadağ, M. (1999). Batı Karadeniz Bölgesinde Karaçam (Pinus nigra Arnold. ssp. pallasiana (lamb.) Holmboe), Doğal Gençleştirme Koşulları Üzerine Araştırmalar. https://batikaradeniz.ogm.gov.tr/Yayinlar1/Teknik%20B%C3%BClten/B%C3%9CLTEN-4.%20Kara%C3%A7am%20Do%C4%9Fal%20Gen%C3%A7le%C5%9Ftirme_1.pdf. Accessed 26 July 2020.

  • Köseoğlu, E., & Kara, F. (2019). Bazı meşcere değişkenlerinin karaçam gençlik sayısı ve büyümesi üzerine etkilerinin karşılaştırılması. Türkiye Ormancılık Dergisi, 20(4), 305–311.

    Article  Google Scholar 

  • Kuemmerle, T., Olofsson, P., Chaskovskyy, O., Baumann, M., Ostapowicz, K., Woodcock, C. E., Houghton, R. A., Hostert, P., Keeton, W. S., & Radeloff, V. C. (2011). Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17, 1335–1349.

    Article  Google Scholar 

  • Lim, C. H., Song, C., Choi, Y., Jeonm S. W. & Lee, W. K. (2019). Decoupling of forest water supply and agricultural water demand attributable to deforestation in North Korea. Journal of Environmental Management 248: 109256.

  • Lucas-Borja, M. E., Fonseca, T., Linares, J. C., Morot, F. G., & Serrano, F. L. (2012). Does the recruitment pattern of Spanish black pine (Pinus nigra Arn ssp. salzmannii) change the regeneration niche over the early life cycle of individuals? Forest Ecology and Management, 284, 93–99.

    Article  Google Scholar 

  • Lucas-Borja, M. E., Madrigal, J., Candel-Pérez, D., et al. (2016). Effects of prescribed burning, vegetation treatment and seed predation on natural regeneration of Spanish black pine (Pinus nigra Arn. ssp. salzmannii) in pure and mixed forest stands. Forest Ecology and Management, 378, 24–30.

    Article  Google Scholar 

  • Makinen, H., Saranpää, P., & Linder, S. (2002). Effect of growth rate on fibre characteristics in Norway spruce (Picea abies (L.) Karst.). Holzforschung, 56, 449–460.

    Article  CAS  Google Scholar 

  • Meyfroidt, P., & Lambin, E. F. (2011). Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36, 343–437.

    Article  Google Scholar 

  • Montes, C. S., Weber, J. C., Garcia, R. A., Silva, D. A., & Muniz, G. I. B. (2017). Variation in growth, wood stiffness and density, and correlations between growth and wood stiffness and density in five tree and shrub species in the Sahelian and Sudanian ecozones of Mali. Trees, 31, 833–849.

    Article  Google Scholar 

  • Nathaniel, S. P. & Bekun, F. V. (2019). Environmental management amidst energy use, urbanization, trade openness, and deforestation: The Nigerian experience. Journal of Public Affairs e2037.

  • Noémie, G., Philippe, B., Sandrine, P. & Christian, G. (2011). Growth of understorey Scots pine (Pinus sylvestris L.) saplings in response to light in mixed temperate forest. Forestry 84(2): 187–195.

  • Niklas, K. L. (1999). The mechanical role of bark. American Journal of Botany, 86(4), 465–469.

    Article  CAS  Google Scholar 

  • Odabaşı, T., Calışkan, A., Bozkus, H. F. (2004). Silvikültür tekniği. İstanbul University Publications, İstanbul. (in Turkish). 314p.

  • OGM. (2019). Performans Programı. Strateji Geliştirme Programı. https://www.ogm.gov.tr/ekutuphane/PerformansProgrami/OGM%202019%20YILI%20PERFORMANS%20PROGRAMI.pdf. Accessed 18 October 2020.

  • Özden, S., & Ennos, R. (2018). The mechanics and morphology of branch and coppice stems in three temperate tree species. Trees, 32, 933–949.

    Article  CAS  Google Scholar 

  • Paine, C. E. T., Stahl, C., Courtois, E. A., Patino, S., Sarmiento, C., & Baraloto, C. (2010). Functional explanations for variation in bark thickness in tropical rain forest trees. Functional Ecology, 24, 1202–1210.

    Article  Google Scholar 

  • Piermattei, A., Garbarino, M., Renzaglia, F. & Urbinati, C. (2013). Climate influence on the expansion and tree-ring growth of Pinus nigra L. at High Altitude in the Central Apennines. The Open Forest Science Journal 6(1).

  • Popovic, P., & Cirkovic-Mitrovic, T. (2016). Afforestation on bare lands - Example of Ibar Gorge, Serbia. Reforesta, 1, 281–299.

    Article  Google Scholar 

  • Project, R. & Development Core Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Rathgeber, C. B. K., Rossi, S., & Bontemps, J. D. (2011). Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 108, 429–438.

    Article  Google Scholar 

  • Rigling, A., Waldner, P. O., Forster, T., Bräker, O. U., & Pouttu, A. (2001). Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Canadian Journal of Forest Research, 31, 18–31.

    Article  Google Scholar 

  • Rocha, M., Assis, R. L., Piedade, M. T. F., et al. (2019). Thirty years after Balbina Dam: Diversity and floristic composition of the downstream floodplain forest, Central Amazon, Brazil. Ecohydrology, 12, 1–14.

    Article  CAS  Google Scholar 

  • Rossi, S., Tremblay, M. J., Morin, H., & Levasseur, V. (2009). Stand structure and dynamics of Picea mariana on the northern border of the natural closed boreal forest in Quebec, Canada. Canadian Journal of Forest Research, 39, 2307–2318.

    Article  Google Scholar 

  • Saldaña-Acosta, A., Meave, J. A., & Sánchez-Velásquez, L. R. (2009). Seedling biomass allocation and vital rates of cloud forest tree species: Responses to light in shade house conditions. Forest Ecology and Management, 258, 1650–1659.

    Article  Google Scholar 

  • Smith, I., & Chui, Y. H. (1994). Factors affecting mode I fracture energy of plantation-grown red pine. Wood Science and Technology, 28, 147–157.

    Article  Google Scholar 

  • Tíscar, P. & Linares, J. (2014). Large-scale regeneration patterns of Pinus nigra subsp. salzmannii: Poor evidence of increasing facilitation across a drought gradient. Forests 5(1): 1–20.

  • Topaçoğlu, O., Şevik, H., & Akkuzu, E. (2016). Effects of water stress on germination of Pinus nigra Arnold. Seeds. Pak J Bot, 48(2), 447–453.

    Google Scholar 

  • Valladares, F., Dobarro, I., Sánchez-Gomez, D., & Pearcy, R. W. (2005). Photoinhibition and drought in Mediterranean woody saplings: Scaling effects and interactions in sun and shade phenotypes. Journal of Experimental Botany, 56(411), 483–494.

    Article  CAS  Google Scholar 

  • Vieira, J., Campelo, F., & Nabais, C. (2009). Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees, 23, 257–265.

    Article  Google Scholar 

  • Will, R., Hennessey, T., Lynch, T., Holeman, R., & Heinemann, R. (2010). Effects of planting density and seed source on loblolly pine stands in southeastern Oklahoma. Forestry Sciences, 56, 437–443.

    Google Scholar 

  • Williams, V. L., Balkwill, K., & Witkowski, E. T. F. (2007). Stem diameter and bark surface area of the fluted trunk of Balanites maughamii (Balanitaceae). Bothalia, 37(2), 211–214.

    Article  Google Scholar 

  • Yaltirik, F. (1971). Taxonomical study on the macro and micro morphological characteristics of ındigenous maples (Acer L.) in Turkey. Istanbul Univesity Press, Istanbul.

  • Yaman, B. (2007). Variation in quantitive vessel element features of Juglans regia wood in the Western Black Sea Region of Turkey. Agrociencia, 42, 357–365.

    Google Scholar 

  • Zhang, S. Y., & Chui, Y. H. (1996). Selecting dry fibre weight for higher and better quality jack pine fibre production. Wood & Fiber Science, 28, 146–152.

    CAS  Google Scholar 

  • Zhang, K., Dang, H., Tan, S., Wang, Z., & Zhang, Q. (2010). Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains. China. Forest Ecology and Management, 259(10), 2036–2047.

    Article  Google Scholar 

  • Zhu, J., Scott, C. T., Scallon, K. L., & Myers, G. C. (2007). Effects of plantation density on wood density and anatomical properties of red pine (Pinus resinosa ait.). Wood and Fiber Science, 39, 502–512.

    CAS  Google Scholar 

  • Ziaco, E., Biondi, F., Rossi, S., & Deslauriers, A. (2014a). Climatic influences on wood anatomy and tree-ring features of Great Basin conifers at a new mountain observatory. Appl Plant Sci, 2(10), 1400054.

    Article  Google Scholar 

  • Ziaco, E., Biondi, F., Rossi, S., & Deslauriers, A. (2014b). Intra-annual wood anatomical features of high-elevation conifers in the Great Basin, USA. Dendrochronologia, 32, 303–312.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Kastamonu Regional Directorate of Forestry, and Emre Genç for providing access to the study areas for this research. Moreover, the authors would like to acknowledge Erol Aksu, Abdurrahman Göksu, and Kamil Karabıyıkoğlu for their help during the fieldworks.

Author information

Authors and Affiliations

Authors

Contributions

FK and SÖ conceived the idea, developed the framework, collected data, and compiled the literature; EFL worked with the writing and editing.

Corresponding author

Correspondence to Ferhat Kara.

Ethics declarations

Ethics approval

NA

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, F., Keleş, S.Ö. & Loewenstein, E.F. Development and anatomical traits of black pine on an abandoned agricultural land compared to forested areas. Environ Monit Assess 193, 621 (2021). https://doi.org/10.1007/s10661-021-09403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09403-5

Keywords

Navigation