Skip to main content
Log in

Induction of apoptosis on ovarian adenocarcinoma cells, A2780 by tricyclohexylphosphanegold (I) mercaptobenzoate derivatives via intrinsic and extrinsic pathways

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Tricyclohexylphosphanegold(I) n-mercaptobenzoate (n = 2, 3, 4) labelled as 13 were previously reported to significantly suppress thioredoxin reductase (TrxR) activities towards ovarian cancer cells, A2780, in vitro. Herein, we explored the role of 13 for their apoptosis inducing ability against A2780 cells. 13 exhibited IC50 values at 1.19 ± 0.03 µM, 2.28 ± 0.04 μM and 0.78 ± 0.01 μM, respectively, compared to cisplatin at 26.8 ± 0.15 µM. The compounds induced A2780 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by ROS production, cytochrome c release, caspases-3/7, -8, -9 and -10 activation, APAF1 and BAX upregulation as well as BCL2A1 and BCL2 genes’ downregulation. In addition, the death mode of 13 was also mediated via death receptor extrinsic pathway manifested by FAS, FASL, FADD, and TNFR1 genes’ upregulation via Human Rt PCR analysis. In addition, 13 significantly caused A2780 arrest at S phase, which was associated with the upregulation of TP53, E2F1, RB1 and CDKN1A upregulation and downregulation of CDK1, CDK4, CDC25A and CDC25C genes. Based on these promising results, these phosphanegold(I) thiolate derivatives could act as feasible candidates for further advanced in vivo ovarian cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data materials

Not applicable.

Code availability

Not applicable.

Abbreviations

BRCA1:

Breast cancer 1

BRCA2:

Breast cancer 2

FBS:

Fetal bovine serum

DMSO:

Dimethylsulfoxide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PBS:

Phosphate buffer saline

FACS:

Fluorescence-activated cell sorting

DCFH-DA:

Dichloro-dihydro-fluorescein diacetate

PI:

Propidium iodide

FSC:

Forward scatter

SSC:

Side scatter

DNA:

Deoxyribonucleic acid

ROS:

Reactive oxygen species

FLICA:

Fluorochrome inhibitor of caspases

CDK:

Cyclin-dependent kinase

PCR:

Polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Nobili S, Mini E, Landini I, Gabbiani C, Casini A, Messori L (2010) Gold compounds as anticancer agents: chemistry, cellular pharmacology, and preclinical studies. Med Res Rev 30:550–580

    Article  PubMed  CAS  Google Scholar 

  2. Higby GJ (1982) Gold in medicine: a review of its use in the West before 1900. Gold Bull 15:130–140

    Article  PubMed  CAS  Google Scholar 

  3. Nardon C, Boscutti G, Fregona D (2014) Beyond platinums: gold complexes as anticancer agents. Anticancer Res 34:487–492

    PubMed  CAS  Google Scholar 

  4. Kostova I (2006) Gold coordination complexes as anticancer agents. Anticancer Agents Med Chem 6:19–32

    Article  PubMed  CAS  Google Scholar 

  5. Azizah AM, Hashimah B, Nirmal K et al (2017) Malaysia National Cancer Registry Report (2012–2016). Ministry of Health, Malaysia

    Google Scholar 

  6. McLemore MR, Miaskowski C, Aouizerat BE, Chen LM, Dodd MJ (2009) Epidemiological and genetic factors associated with ovarian cancer. Cancer Nurs 32:281–290

    Article  PubMed  PubMed Central  Google Scholar 

  7. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2017. National Cancer Institute, Bethesda, MD. https://seer.cancer.gov/csr/1975_2017/, based on November 2019 SEER data submission, posted to the SEER web site, April 2020.

  8. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317(23):2402–2416

    Article  PubMed  CAS  Google Scholar 

  9. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A (2011) Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 3(3):3279–3330

    Article  CAS  Google Scholar 

  10. Pottier A, Borghi E, Levy L (2014) New use of metals as nanosized radioenhancers. Anticancer Res 34:443–453

    PubMed  CAS  Google Scholar 

  11. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF (2000) Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 18:2695–2701

    Article  PubMed  CAS  Google Scholar 

  12. Donzelli E, Carfi M, Miloso M, Strada A, Galbiati A, Bayssas M, Griffon-Etienne G, Caveletti G (2004) Neurotoxicity of platinum compounds: comparison of the effects of cisplatin and oxaliplatin on the human neuroblastoma cell line SH-SY5Y. J Neurooncol 67:65–73

    Article  PubMed  Google Scholar 

  13. Boulikas T, Vougiouka M (2003) Cisplatin and platinum drugs at the molecular level. Oncol Rep 10:1663–1682

    PubMed  CAS  Google Scholar 

  14. Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP (2010) Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 16:1813–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Abdou HE, Mohamed AA, Fackler JP, Burini A, Galassi R, López-de-Luzuriaga JM, Olmos ME (2009) Structures and properties of gold(I) complexes of interest in biochemical applications. Coord Chem Rev 253:1661–1669

    Article  CAS  Google Scholar 

  16. Fernández-Moreira V, Raquel PH, Gimeno MC (2019) Anticancer properties of gold complexes with biologically relevant ligands. Pure Appl Chem 91:247–269

    Article  CAS  Google Scholar 

  17. Simon TM, Kunishima DH, Vibert GJ, Lorber A (1979) Cellular antiproliferative action exerted by auranofin. J Rheumatol S5:91–97

    Google Scholar 

  18. Tiekink ER (2003) Phosphinegold(I) thiolates–pharmacological use and potential. Bioinorg Chem Appl 1:53–67

    Article  PubMed Central  CAS  Google Scholar 

  19. Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Rad Biol Med 42:872–881

    Article  PubMed  CAS  Google Scholar 

  20. Landini I, Lapucci A, Pratesi A, Massai L, Napoli C, Perrone G, Pinzani P, Messori L, Mini E, Nobili S (2017) Selection and characterization of a human ovarian cancer cell line resistant to auranofin. Oncotarget 8:96062–96078

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wani MY, Malik MA (2021) Gold and its complexes in anticancer chemotherapy. Springer, Singapore

    Book  Google Scholar 

  22. Ang KP, Chan PF, Hamid RA (2020) Antiproliferative activity exerted by tricyclohexylphosphanegold(I) n-mercaptobenzoate against MCF-7 and A2780 cell lines: the role of p53 signaling pathways. Biometals. https://doi.org/10.1007/s10534-020-00269-7

    Article  PubMed  Google Scholar 

  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  24. Pocasap P, Weerapreeyakul N, Thumanu K (2019) Alyssin and iberin in cruciferous vegetables exert anticancer activity in HepG2 by increasing intracellular reactive oxygen species and tubulin depolymerization. Biomol Ther (Seoul) 27(6):540–552

    Article  Google Scholar 

  25. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496

    Article  CAS  PubMed  Google Scholar 

  26. Esmaeili MA, Farimani MM, Kiaei M (2014) Anticancer effect of calycopterin via PI3K/Akt and MAPK signaling pathways, ROS-mediated pathway and mitochondrial dysfunction in hepatoblastoma cancer (HepG2) cells. Mol Cell Biochem 397(1–2):17–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wachmann K, Pop C, vanRaam BJ, Drag M, Mace PD, Snipas SJ, Zmasek C, Scwarzenbacher R, Salvesen GS, Riedl SJ (2010) Activation and specificity of human caspase-10. Biochemistry 49:8307–8315

    Article  PubMed  CAS  Google Scholar 

  28. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6):a008672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arora S, Tandon S (2015) DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy 104(1):36–47

    Article  PubMed  Google Scholar 

  30. Wang P, Cui J, Wen J, Guo Y, Zhang L, Chen X (2016) Cisplatin induces HepG2 cell cycle arrest through targeting specific long noncoding RNAs and the p53 signaling pathway. Oncol Lett 12:4605–4612. https://doi.org/10.3892/ol.2016.5288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang X, Guo Z (2013) Targeting and delivery of platinum-based anticancer drugs. Chem Soc Rev 42:202–224

    Article  PubMed  CAS  Google Scholar 

  32. Miow QH, Tan TZ, Ye J, Lau JA, Yokomizo T, Thiery JP, Mori S (2015) Epithelial-mesenchymal status renders differential responses to cisplatin in ovarian cancer. Oncogene 34:1899–1907

    Article  PubMed  CAS  Google Scholar 

  33. Zou T, Lum CT, Lok CN, Zhang JJ, Che CM (2015) Chemical biology of anticancer gold(III) and gold(I) complexes. Chem Soc Rev 44(24):8786–8801

    Article  PubMed  CAS  Google Scholar 

  34. Sun C, Mirzadeh N, Guo SX, Li J, Li Z, Bond AM, Zhang J, Bhargava SK (2019) Unprecedented formation of a binuclear Au(II)–Au(II) complex through redox state cycling: Electrochemical interconversion of Au(I)–Au(I), Au(II)–Au(II), and Au(I)–Au(III) in binuclear complexes containing the carbanionic ligand C6F4PPh2. Inorg Chem 58:13999–14004

    Article  PubMed  CAS  Google Scholar 

  35. Mirzadeh N, Reddy TS, Bhargava SK (2019) Advances in diphosphine ligand-containing gold complexes as anticancer agents. Coord Chem Rev 388:343–359

    Article  CAS  Google Scholar 

  36. deVos D, Symth DR, Tiekink ER (2002) Cytotoxicity of triorganophosphinegold(I) n-mercaptobenzoates, n-2,3,4. Met Based Drugs 8(6):303–306

    Article  Google Scholar 

  37. Wehr-Candler T, Henderson W (2016) Coordination chemistry of the thiosalicylate ligand. Coord Chem Rev 313:111–155

    Article  CAS  Google Scholar 

  38. Tiekink ERT, Henderson W (2017) Coordination chemistry of 3- and 4-mercaptobenzoate ligands: versatile hydrogen-bonding isomers of the thiosalicylate (2-mercaptobenzoate) ligand. Coord Chem Rev 341:19–52

    Article  CAS  Google Scholar 

  39. Tyrina A (2019) Interactions of gold thiolates with protein disulfides. BSc Honors College. 531

  40. Pham XH, Hahm E, Huynh KH, Son BS, Kim HM, Jeong DH, Jun BH (2019) 4-Mercaptobenzoic acid labeled gold-silver-alloy-embedded silica nanoparticles as an internal standard containing nanostructures for sensitive quantitative thiram detection. Int J Mol Sci 20:4841. https://doi.org/10.3390/ijms20194841

    Article  PubMed Central  CAS  Google Scholar 

  41. Zheng K, Setyawati MI, Leong DT, Xie J (2020) Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater 6(4):941–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gandin V, Fernandes AP, Rigobello MP, Dani B, Sorrentino F, Tisato F, Bjornstedt M, Bindoli A, Sturaro A, Rella R, Marzano C (2007) Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase. Biochem Pharmacol 79:90

    Article  CAS  Google Scholar 

  43. Abás E, PenaMartínez R, Aguirre-Ramírez D, Rodríguez Diéguez A, Laguna M, Grasa L (2020) New selective thiolate gold(i) complexes inhibit the proliferation of different human cancer cells and induce apoptosis in primary cultures of mouse colon tumors. Dalton Trans 49:1915–1927

    Article  PubMed  Google Scholar 

  44. Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3(1):1351–1371

    Article  CAS  Google Scholar 

  45. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  PubMed  CAS  Google Scholar 

  46. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  PubMed  CAS  Google Scholar 

  47. Jin S, Zhou F, Katirai F, Li PL (2011) Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 15(4):1043–1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  PubMed  CAS  Google Scholar 

  49. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32. https://doi.org/10.1186/1471-2121-14-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25(1):104–113. https://doi.org/10.1038/cdd.2017.169

    Article  PubMed  CAS  Google Scholar 

  51. Diwanji N, Bergmann A (2018) An unexpected friend – ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol 80:74–82

    Article  PubMed  CAS  Google Scholar 

  52. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta Bioenerget 1807:735–745

    Article  CAS  Google Scholar 

  54. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556

    Article  PubMed  CAS  Google Scholar 

  55. Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830

    Article  PubMed  Google Scholar 

  56. Clarke PR, Allan LA (2009) Cell-cycle control in the face of damage–a matter of life or death. Trends Cell Biol 19:89–98

    Article  PubMed  CAS  Google Scholar 

  57. Pena-Blanco A, Garcia-Saez AJ (2018) Bax, Bak and Beyond – mitochondrial performance in apoptosis. FEBS J 285(3):416–431

    Article  PubMed  CAS  Google Scholar 

  58. Ott I, Qian X, Xu Y, Kubutat D, Will J et al (2009) A gold(I) phosphine complex containing naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J Med Chem 52:763–770

    Article  PubMed  CAS  Google Scholar 

  59. Caruso F, Villa R, Rossi M, Pettinari C, Paduano F, Pennati M, Daidone MG, Zaffaroni N (2007) Mitochondria are primary targets in apoptosis induced by the mixed phosphine gold species chlorotriphenylphosphine-1,3- bis (diphenylphosphino) propanegold(I) in melanoma cell lines. Biochem Pharmacol 73(6):773–781

    Article  PubMed  CAS  Google Scholar 

  60. Day TW, Huang S, Safa AR (2008) c-FLIP knockdown induces ligand-independent DR5-, FADD-, caspase-8-, and caspase-9-dependent apoptosis in breast cancer cells. Biochem Pharmacol 76(12):1694–1704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li B, Gao Y, Rankin GO, Rojanasakul Y, Cutler SJ, Tu Y, Chen YC (2015) Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells. Cancer Lett 356(2):418–433

    Article  PubMed  CAS  Google Scholar 

  62. Horn S, Hughes MA, Schilling R, Sticht C, Tenev T, Ploesser M, Meier P, Sprick M, MacFarlane M, Leverkus M (2017) Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L of NF-kB activation and cell survival. Cell Rep 19(4):785–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Jung EB, Lee SC (2014) Baicalein attenuates proteasome inhibition-induced apoptosis by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. Eur J Pharmacol 730:116–124

    Article  PubMed  CAS  Google Scholar 

  64. Manzl C, Krumschnabel G, Bock F, Sohm B, Labi V, Baumgartner F, Logette E, Tschopp J, Villunger A (2009) Caspase-2 activation in the absence of piddosome formation. J Cell Biol 185:291–303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Shi J, Shen HM (2008) Critical role of Bid and Bax in indirubin-3′-monoxime-induced apoptosis in human cancer cells. Biochem Pharmacol 75:1729–1742

    Article  PubMed  CAS  Google Scholar 

  66. Jamaludin NS, Goh ZJ, Cheah YK, Ang KP, Sim JH, Khoo CH, Fairuz ZA, Halim SN, Ng SW, Seng HL, Tiekink ER (2013) Phosphanegold(I) dithiocarbamates, R3PAu[SC(=S)N((i)Pr)CH2CH2OH] for R = Ph, Cy and Et: role of phosphane-bound R substituents upon in vitro cytotoxicity against MCF-7R breast cancer cells and cell death pathways. Eur J Med Chem 67:127–141

    Article  PubMed  CAS  Google Scholar 

  67. Ooi KK, Yeo CI, Ang KP, Akim AM, Cheah YK, Halim SN, Seng HL, Tiekink ER (2015) Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NC6H4Me-4] for R = Me, Et and iPr, induce apoptosis, cell cycle arrest and inhibit cell invasion of HT-29 colon cancer cells through modulation of the nuclear factor-κB activation pathway and ubiquitination. J Biol Inorg Chem 20:855–873

    Article  PubMed  CAS  Google Scholar 

  68. Sabol SL, Li R, Lee TY, Abdul-Khalek R (1998) Inhibition of apoptosis-associated DNA fragmentation activity in nonapoptotic cells: the role of DNA fragmentation factor-45 (DFF45/ICAD). Biochem Biophys Res Comm 253:151–158

    Article  PubMed  CAS  Google Scholar 

  69. Wu Z, Wu Y, Qin Y, Li X (2014) Influences of sorting and cryopreservation on the mitochondrial membrane potential (MMP) and phosphatidylserine (PS) externalization in bovine sperm. Livest Sci 168:177–182

    Article  CAS  Google Scholar 

  70. Marino G, Kroemer G (2013) Mechanisms of apoptotic phosphotidylserine exposure. Cell Res 23:1247–1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70(5):257–265

    Article  PubMed  Google Scholar 

  72. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  73. Schreiber M, Kolbus A, Piu F, Szabowski A, Möhle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF (1999) Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13(5):607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z (2016) Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. EBioMedicine 8:30–39

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wiese C, Rudolph JH, Jakob B, Fink D, Tobias F, Blanttner C, Taucher-Scholz G (2012) PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair 11:511–521

    Article  PubMed  CAS  Google Scholar 

  76. Longworth MS, Dyson NJ (2010) pRB, a local chromatin organizer with global possibilities. Chromosoma 119(1):1–11

    Article  PubMed  CAS  Google Scholar 

  77. Chen R, Liu S, Ye H, Li J, Du Y, Chen L et al (2015) Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population. Sci Rep 5:13300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lei ST, Shen F, Chen JW, Feng JH, Cai WS, Shen L, Hui ZW, Xu B (2016) MiR-639 promoted cell proliferation and cell cycle in human thyroid cancer by suppressing CDKN1A expression. Biomed Pharmacother 84:1834–1840

    Article  PubMed  CAS  Google Scholar 

  79. Julian L, Palander O, Seifried L et al (2008) Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27:1572–1579

    Article  PubMed  CAS  Google Scholar 

  80. Röhrs S, Kutzner N, Vlad A, Grunwald T, Ziegler S, Müller O (2009) Chronological expression of Wnt target genes Ccnd1, Myc, Cdkn1a, Tfrc, Plf1 and Ramp3. Cell Biol Int 33:501–508

    Article  PubMed  CAS  Google Scholar 

  81. Brügger D, Brischwein K, Liu C, Bader P, Niethammer D, Gekeler V, Beck JF (2002) Induction of drug resistance and protein kinase C genes in A2780 ovarian cancer cells after incubation with antineoplastic agents at sublethal concentrations. Anticancer Res 22(6C):4229–4232

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Higher Education, Malaysia, grant number UM.C/HIR-MOHE/SC/03 and UM.C/HIR-MOHE/SC/12. We thanked Prof Edward R.T. Tiekink for providing the compounds and Universiti Malaya for providing the funding under High Impact Research Schemes and collaborated with us by providing the compounds and the funding. We also thanked Prof Dr Noor Saadah Abd Rahman, the Deputy Vice Chancellor (Research and Innovation) at the University of Malaya for giving us the consent to publish the data.

Funding

This research was funded by Ministry of Higher Education, Malaysia, grant number UM.C/HIR-MOHE/SC/03 and UM.C/HIR-MOHE/SC/12.

Author information

Authors and Affiliations

Authors

Contributions

AKP performed the experiments and wrote the original draft. CPF contributed to experimental studies and data collection. RAH supervised the project, validated the data analysis, edited, revised and submitted the manuscript.

Corresponding author

Correspondence to Roslida Abd Hamid.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 584 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, K.P., Chan, P.F. & Hamid, R.A. Induction of apoptosis on ovarian adenocarcinoma cells, A2780 by tricyclohexylphosphanegold (I) mercaptobenzoate derivatives via intrinsic and extrinsic pathways. J Biol Inorg Chem 26, 833–853 (2021). https://doi.org/10.1007/s00775-021-01892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01892-6

Keywords

Navigation