Skip to main content
Log in

Assessment of sal (Shorea robusta) forest phenology and its response to climatic variables in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Remote sensing-based observation provides an opportunity to study the spatiotemporal variations of plant phenology across the landscapes. This study aims to examine the phenological variations of different types of sal (Shorea robusta) forests in India and also to explore the relationship between phenology metrics and climatic parameters. Sal, one of the main timber-producing species of India, can be categorized into dry, moist, and very moist sal. The phenological metrics of different types of sal forests were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Enhanced Vegetation Index (EVI) time series data (2002–2015). During the study period, the average start of season (SOS) was found to be 16 May, 17 July, and 29 June for very moist, moist, and dry sal forests, respectively. The spatial distribution of mean SOS was mapped as well as the impact of climatic variables (temperature and rainfall) on SOS was investigated during the study period. In relation to the rainfall, values of the coefficient of determination (R2) for very moist, moist, and dry sal forests were 0.69, 0.68, and 0.76, respectively. However, with temperature, R2 values were found higher (R2 = 0.97, 0.81, and 0.97 for very moist, moist, and dry sal, respectively). The present study concluded that MODIS EVI is well capable of capturing the phenological metrics of different types of sal forests across different biogeographic provinces of India. SOS and length of season (LOS) were found to be the key phenology metrics to distinguish the different types of sal forests in India and temperature has a greater influence on SOS than rainfall in sal forests of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The MODIS EVI 16-day composite (MOD13A2) is accessible via https://usgs.gov.

References

  • Bajpai, O., Kumar, A., Mishra, A. K., Sahu, N., Behera, S. K., & Chaudhary, L. B. (2012). Phenological study of two dominant tree species in tropical moist deciduous forest from the Northern India. International Journal of Botany, 8, 66–72. https://doi.org/10.3923/ijb.2012.66.72

    Article  Google Scholar 

  • Busetto, L., Colombo, R., Migliavacca, M., Cremonese, E., Meroni, M., Galvagno, M., Rossini, M., Siniscalco, C., Morra Di Cella, U., & Pari, E. (2010). Remote sensing of larch phenological cycle and analysis of relationships with climate in the Alpine region. Global Change Biology, 16(9), 2504–2517. https://doi.org/10.1111/j.1365-2486.2010.02189.x

    Article  Google Scholar 

  • Caparros-Santiago, J. A., Rodriguez-Galiano, V., & Dash, J. (2021). Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 171, 330–347. https://doi.org/10.1016/j.isprsjprs.2020.11.019

    Article  Google Scholar 

  • Champion, S. H., & Seth, S. K. (1968). A revised survey of the forest types of India. Delhi.

    Google Scholar 

  • Chapman, C. A., Chapman, L. J., Struhsaker, T. T., Zanne, A. E., Clark, C. J., & Poulsen, J. R. (2005). A long-term evaluation of fruiting phenology: Importance of climate change. Journal of Tropical Ecology, 21, 31–45. https://doi.org/10.1017/S0266467404001993

    Article  Google Scholar 

  • Chaturvedi, R. K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N. V., Sukumar, R., & Ravindranath, N. H. (2011). Impact of climate change on Indian forests: A dynamic vegetation modeling approach. Mitigation and Adaptation Strategies for Global Change, 16, 119–142. https://doi.org/10.1007/s11027-010-9257-7

    Article  Google Scholar 

  • Chen, X., & Xu, L. (2012). Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. International Journal of Biometeorology, 56, 695–706. https://doi.org/10.1007/s00484-011-0471-0

    Article  Google Scholar 

  • Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22(7), 357–365. https://doi.org/10.1016/j.tree.2007.04.003

    Article  Google Scholar 

  • Dai, J., Wang, H., & Ge, Q. (2014). The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 58, 521–528. https://doi.org/10.1007/s00484-013-0679-2

    Article  Google Scholar 

  • Dash, J., Jeganathan, C., & Atkinson, P. M. (2010). The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sensing of Environment, 114(7), 1388–1402. https://doi.org/10.1016/j.rse.2010.01.021

    Article  Google Scholar 

  • Dhanda, P., Nandy, S., Kushwaha, S. P. S., Ghosh, S., Murthy, Y. K., & Dadhwal, V. K. (2017). Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Progress in Physical Geography, 41(3), 247–267. https://doi.org/10.1177/0309133317693443

    Article  Google Scholar 

  • Deka, J., Kalita, S., & Khan, M. L. (2019). Vegetation phenological characterization of alluvial plain Shorea robusta-dominated tropical moist deciduous forest of Northeast India using MODIS NDVI time series data. Journal of the Indian Society of Remote Sensing, 47, 1287–1293. https://doi.org/10.1007/s12524-019-00991-x

    Article  Google Scholar 

  • Diem, P. K., Pimple, U., Sitthi, A., Varnakovida, P., Kaewthongrach, R., & Chidthaisong, A. (2017). Responses of tropical deciduous forest phenology to climate variation in Northern Thailand. In: International Conference on Environmental Research and Technology (ICERT 2017), pp. 340–345.

  • Fitter, A. H., & Fitter, R. S. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 1689–1691. https://doi.org/10.1126/science.1071617

    Article  CAS  Google Scholar 

  • Gao, F., Morisette, J. T., Wolfe, R. E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan, B., & Nightingale, J. (2008). An algorithm to produce temporally and spatially continuous MODIS-LAI time series. IEEE Geoscience and Remote Sensing Letters, 5(1), 60–64. https://doi.org/10.1109/LGRS.2007.907971

    Article  Google Scholar 

  • Gautam, K. H., & Devoe, N. N. (2006). Ecological and anthropogenic niches of sal (Shorea robusta Gaertn. f.) forest and prospects for multiple-product forest management—a review. Forestry, 79(1), 81–101. https://doi.org/10.1093/forestry/cpi063

  • Ghosh, S., Nandy, S., Mohanty, S., Subba, R., & Kushwaha, S. P. S. (2019). Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation. Environmental Monitoring and Assessment, 191(3), 786. https://doi.org/10.1007/s10661-019-7680-0

    Article  Google Scholar 

  • Gitelson, A. A. (2004). Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173. https://doi.org/10.1078/0176-1617-01176

    Article  CAS  Google Scholar 

  • Han, Q., Luo, G., & Li, C. (2013). Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree species in Europe. Journal of Applied Remote Sensing, 7(1), 073485. https://doi.org/10.1117/1.JRS.7.073485

  • Heumann, B. W., Seaquist, J. W., Eklundh, L., & Jönsson, P. (2007). AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment, 108(4), 385–392. https://doi.org/10.1016/j.rse.2006.11.025

    Article  Google Scholar 

  • Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 113(1), 248–258. https://doi.org/10.1016/j.rse.2008.09.003

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • Huete, A., Justice, C., & Liu, H. (1994). Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment, 49(3), 224–234. https://doi.org/10.1016/0034-4257(94)90018-3

    Article  Google Scholar 

  • Huntington, T. G. (2004). Climate change, growing season length, and transpiration: Plant response could alter hydrologic regime. Plant Biology, 6(06), 651–653. https://doi.org/10.1055/s-2004-830353

    Article  CAS  Google Scholar 

  • Ivits, E., Horion, S., Fensholt, R., & Cherlet, M. (2014). Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Global Change Biology, 20(2), 581–593. https://doi.org/10.1111/gcb.12393

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010a). Mapping the phenology of natural vegetation in India using a remote sensing-derived chlorophyll index. International Journal of Remote Sensing, 31(22), 5777–5796. https://doi.org/10.1080/01431161.2010.512303

    Article  Google Scholar 

  • Jeganathan, C., Dash, J., & Atkinson, P. M. (2010b). Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landscape Ecology, 25, 1125–1141. https://doi.org/10.1007/s10980-010-9490-1

    Article  Google Scholar 

  • Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  • Jönsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite sensor data. Computers and Geosciences, 30(8), 833–845.

    Article  Google Scholar 

  • Keeling, C. D., Chin, J. F., & Whorf, T. P. (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–149.

    Article  CAS  Google Scholar 

  • Kumar, M., Kalra, N., Khaiter, P., Ravindranath, N. H., Singh, V., Singh, H., Sharma, S., & Rahnamayan, S. (2019). PhenoPine: A simulation model to trace the phenological changes in Pinus roxhburghii in response to ambient temperature rise. Ecological Modelling, 404, 12–20. https://doi.org/10.1016/j.ecolmodel.2019.05.003

    Article  Google Scholar 

  • Kushwaha, C. P., & Singh, K. P. (2005). Diversity of leaf phenology in a tropical deciduous forest in India. Journal of Tropical Ecology, 21(1), 47–56. https://doi.org/10.1017/S0266467404002032

    Article  Google Scholar 

  • Kushwaha, S. P. S., & Nandy, S. (2012). Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiversity and Conservation, 21, 1215–1228. https://doi.org/10.1007/s10531-012-0264-8

    Article  Google Scholar 

  • Lieth, H. (1974). Purposes of a phenology book. In H. Lieth (Ed.), Phenology and seasonality modeling (pp. 3–19). Springer.

    Chapter  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O. G., Briede, A., & Chmielewski, F. M. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702. https://doi.org/10.1038/386698a0

    Article  CAS  Google Scholar 

  • Nandy, S., Das, A. K., & Das, G. (2004). Phenology and culm growth of Melocanna baccifera (Roxb.) Kurz in Barak Valley, North-East India. Journal of Bamboo and Rattan3(1), 27–34.

  • Nandy, S., Singh, R., Ghosh, S., Watham, T., Kushwaha, S. P. S., Kumar, A. S., & Dadhwal, V. K. (2017). Neural network-based modelling for forest biomass assessment. Carbon Management, 8(4), 305–317. https://doi.org/10.1080/17583004.2017.1357402

    Article  CAS  Google Scholar 

  • Nandy, S., Srinet, R., & Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat‐2, Sentinel‐1 and Sentinel‐2 data using Random Forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, e2021GL093799. https://doi.org/10.1029/2021GL093799

  • Piao, S., Fang, J., Zhou, L., Ciais, P., & Zhu, B. (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4), 672–685. https://doi.org/10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  • Pillai, N. D., Nandy, S., Patel, N. R., Srinet, R., Watham, T., & Chauhan, P. (2019). Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodiversity and Conservation, 28, 2123–2141. https://doi.org/10.1007/s10531-019-01770-3

    Article  Google Scholar 

  • Prasad, V. K., Badarinath, K. V., & Eaturu, A. (2007). Spatial patterns of vegetation phenology metrics and related climatic controls of eight contrasting forest types in India—analysis from remote sensing datasets. Theoretical and Applied Climatology, 89(1), 95–107. https://doi.org/10.1007/s00704-006-0255-3

    Article  Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, J. D., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: Analysis of break and active. Current Science, 91, 296–306.

    Google Scholar 

  • Ralhan, P. K., Khanna, R., Singh, S. P., & Singh, J. S. (1985). Phenological characteristics of the tree layer of Kumaun Himalayan forests. Vegetatio, 60(2), 91–101. https://doi.org/10.1007/BF00040351

    Article  Google Scholar 

  • Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012

    Article  Google Scholar 

  • Rodgers, W. A., Panwar, H. S., & Mathur, V. B. (2000). Wildlife protected area network in India: A review executive summary. Wildlife Institute of India, Dehradun.

  • Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., et al. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 39, 142–159. https://doi.org/10.1016/j.jag.2015.03.003.

    Article  Google Scholar 

  • Satya, U. D., & Nayaka, S. (2005). Shorea robusta—an excellent host tree for lichen growth in India. Current Science, 89, 594–595.

    Google Scholar 

  • Schwartz, M. D., & Reed, B. C. (1999). Surface phenology and satellite sensor-derived onset of greenness: An initial comparison. International Journal of Remote Sensing, 20(17), 3451–3457. https://doi.org/10.1080/014311699211499

    Article  Google Scholar 

  • Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE, 7, e36741. https://doi.org/10.1371/journal.pone.0036741

    Article  CAS  Google Scholar 

  • Singh, K. P., & Kushwaha, C. P. (2005). Paradox of leaf phenology: Shorea robusta is a semi-evergreen species in tropical dry deciduous forests in India. Current Science, 1820–1824.

  • Stöckli, R., & Vidale, P. L. (2004). European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing, 25(17), 3303–3330. https://doi.org/10.1080/01431160310001618149

    Article  Google Scholar 

  • Tan, B., Morisette, J. T., Wolfe, R. E., Gao, F., Ederer, G. A., Nightingale, J., & Pedelty, J. A. (2011). An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 361–371. https://doi.org/10.1109/JSTARS.2010.2075916

    Article  Google Scholar 

  • Tang, J., Körner, C., Muraoka, H., Piao, S., Shen, M., Thackeray, S. J., & Yang, X. (2016). Emerging opportunities and challenges in phenology: A review. Ecosphere, 7, e01436. https://doi.org/10.1002/ecs2.1436

    Article  Google Scholar 

  • Tewari, D. N. (1995). A monograph on sal (Shorea robusta Gaertn. f.). Dehradun, India.

  • Troup, R. S. (1921). The silviculture of Indian trees (Vol. I). Clarendon Press.

    Google Scholar 

  • Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389. https://doi.org/10.1038/416389a

    Article  CAS  Google Scholar 

  • Wang, C., Li, J., Liu, Q., Zhong, B., Wu, S., & Xia, C. (2017). Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index. Sensors, 17, 1982. https://doi.org/10.3390/s17091982

    Article  Google Scholar 

  • Wang, H., Dai, J., Zheng, J., & Ge, Q. (2015). Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850 to 2009. International Journal of Climatology, 35(6), 913–922. https://doi.org/10.1002/joc.4026

    Article  Google Scholar 

  • White, K., Pontius, J., & Schaberg, P. (2014). Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148, 97–107. https://doi.org/10.1016/j.rse.2014.03.017

    Article  Google Scholar 

  • Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A., Bohrer, G., Lafleur, P. M., Peichl, M., Gonsamo, A., & Xu, S. (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171–182. https://doi.org/10.1016/j.agrformet.2016.11.193

    Article  Google Scholar 

  • Yadav, B. K., & Nandy, S. (2015). Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques. Environmental Monitoring and Assessment, 187(5), 308. https://doi.org/10.1007/s10661-015-4551-1

    Article  CAS  Google Scholar 

  • Zeng, L., Wardlow, B. D., Xiang, D., Hu, S., & Li, D. (2020). A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sensing of Environment, 237, 111511. https://doi.org/10.1016/j.rse.2019.111511

    Article  Google Scholar 

  • Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., & Liu, Z. (2005). Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research: Atmospheres110(D12). https://doi.org/10.1029/2004JD005263

  • Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C., & Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475. https://doi.org/10.1016/S0034-4257(02)00135-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Head, Forestry and Ecology Department, Dean and Director, Indian Institute of Remote Sensing, ISRO, Dehradun for their encouragement and support for this study. The authors are thankful to the MODIS Science Team, NASA, for providing the MODIS EVI data. Thanks are also due to the TIMESAT software development team for providing access to the software. The authors are grateful to the anonymous reviewers for their valuable suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Nandy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, S., Ghosh, S. & Singh, S. Assessment of sal (Shorea robusta) forest phenology and its response to climatic variables in India. Environ Monit Assess 193, 616 (2021). https://doi.org/10.1007/s10661-021-09356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09356-9

Keywords

Navigation