Skip to main content
Log in

n-Bit Quantum Secret Sharing Protocol Using Quantum Secure Direct Communication

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The proposed quantum secret sharing protocol in this article conveys n bit secret messages from the sender to the n receivers making use of a secure direct communication. In this protocol, all users work together to access their secrets. As a result, the security of the proposed protocol is high. The channel used in this design is an entangled 2n-qubit state. The efficiency of this design has been compared with other designs and it turns out that the efficiency of the proposed protocol is equal to that of the best designs. We demonstrate that this protocol is more efficient than the only n-user confidential subscription plan. Also, all stages of the design in a noisy space have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Phys. Today. 54(2), 60 (2001)

    Article  Google Scholar 

  2. Spiller, T.P., Munro, W.J., Barrett, S.D., Kok, P.: An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46(6), 407–436 (2005)

    Article  ADS  Google Scholar 

  3. Home, J.P., Hanneke, D., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Complete methods set for scalable ion trap quantum information processing. Science. 325(5945), 1227–1230 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Benenti, G., Casati, G., & Strini, G. (2004). Principles of Quantum Computation and Information-Volume I: Basic Concepts. World scientific

  5. Bennet, C. H., & Brassard, G. (1984). Processings of IEEE international conference on computers. Systems, and Signal Processing (New York: IEEE) p175

  6. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  7. Gao, F., Wen, Q.Y.: Protocol of quantum key distribution and identification. J Beijing Univ Posts Telecommun. 27(3), 98–102 (2004)

    Google Scholar 

  8. Bienfang, J. C., Restelli, A., Rogers, D., Mink, A., Hershman, B. J., Nakassis, A., ... & Clark, C. W. (2007). High-repetition rate quantum key distribution. In Quantum Communications Realized (Vol. 6780, p. 67800C). International Society for Optics and Photonics

  9. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bregman, I., Aharonov, D., Ben-Or, M., Eisenberg, H.S.: Simple and secure quantum key distribution with biphotons. Phys. Rev. A. 77(5), 050301 (2008)

    Article  ADS  Google Scholar 

  11. Houshmand, M., & Hosseini-Khayat, S. (2011). An entanglement-based quantum key distribution protocol. In 2011 8th International ISC Conference on Information Security and Cryptology (pp. 45-48). IEEE

  12. Xia, Y., Fu, C. B., Li, F. Y., Zhang, S., Yeon, K. H., & Um, C. I. (2006). Controlled secure direct communication by using GHZ entangled state. arXiv preprint quant-ph/0601145

  13. Fu-Guo, D., Xi-Han, L., Chun-Yan, L., Ping, Z., Hong-Yu, Z.: Economical quantum secure direct communication network with single photons. Chin. Phys. 16(12), 3553–3559 (2007)

    Article  Google Scholar 

  14. Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019 (2010)

    Article  Google Scholar 

  15. Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)

    Article  ADS  Google Scholar 

  16. Zhang, K.J., Zhang, X., Jia, H.Y., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 81 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Khorrampanah, M., & Houshmand, M. (2013). An efficient quantum secret sharing using secure direct communication. In 2013 21st Iranian Conference on Electrical Engineering (ICEE) (pp. 1-5). IEEE

  18. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)

    Article  Google Scholar 

  19. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56(7), 2101–2112 (2017)

    Article  MathSciNet  Google Scholar 

  22. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A. 337(4–6), 329–334 (2005)

    Article  ADS  Google Scholar 

  24. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A. 71(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)

    Article  ADS  Google Scholar 

  26. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  27. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A. 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A. 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xiao, L., Long, G. L., Deng, F. G., & Pan, J. W. (2004). Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A, 69(5), 052307

  30. Fu-Guo, D., Ping, Z., Xi-Han, L., Chun-Yan, L., Hong-Yu, Z.: Efficient multiparty quantum secret sharing with Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 23(5), 1084–1087 (2006)

    Article  ADS  Google Scholar 

  31. Jian, W., Quan, Z., Chao-Jing, T.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47(3), 454–458 (2007)

    Article  ADS  Google Scholar 

  32. Yanyan, L., & Chengqian, X. (2009). Three-party quantum secret sharing based on secure direct communication. In 2009 International Forum on Information Technology and Applications (Vol. 1, pp. 126-130). IEEE

  33. Hwang, T., Hwang, C.C., Li, C.M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)

    Article  ADS  Google Scholar 

  34. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35(28), L407–L413 (2002)

    Article  MathSciNet  Google Scholar 

  35. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  36. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A. 342(1–2), 60–66 (2005)

    Article  ADS  Google Scholar 

  37. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A. 66(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594–2597 (1998)

    Article  ADS  Google Scholar 

  40. Breuer, H. P., & Petruccione, F. (2002). The Theory of Open Quantum Systems. Oxford University Press on Demand

  41. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18(11), 353 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  42. Quek, S., Li, Z., Yeo, Y.: Effects of quantum noises and noisy quantum operations on entanglement and special dense coding. Phys. Rev. A. 81(2), 024302 (2010)

    Article  ADS  Google Scholar 

  43. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97(14), 140403 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Houshmand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi-Zadeh, M.S., Khorrampanah, M., Houshmand, M. et al. n-Bit Quantum Secret Sharing Protocol Using Quantum Secure Direct Communication. Int J Theor Phys 60, 3744–3759 (2021). https://doi.org/10.1007/s10773-021-04865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04865-2

Keywords

Navigation