Skip to main content
Log in

Superconducting MgB2 Wire Drawing Considering Anisotropic Hardening Behavior and Hydrostatic Effect

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Numerical modeling was conducted to investigate the deformation behavior of powder mixture during multi-pass drawing processes for multi-filamentary MgB2 wire. A modified Drucker-Prager Cap (DPC) model with an elliptical cap surface using the new material characterization method was developed to capture the anisotropic hardening behavior and hydrostatic effect of the powder mixture. A number of uniaxial die compaction, cold isostatic pressing, diametrical compression, and uniaxial compression tests were conducted using different powder densities to characterize the modified DPC model. A commercial finite element software ABAQUS with a user subroutine was used to simulate the drawing of the MgB2 wire. The density and area fraction of the powder mixture during the wire-drawing process were verified with experimental results. The difference in packing density at the inner and outer filaments of the MgB2 wire was successfully captured by simulation. In addition, the effect of the initial packing density on the superconducting properties of MgB2 wire was numerically studied. It is shown that the increase in the superconducting area, which results from a high initial packing density, should be more effective compared to the increase in the grain connectivity in enhancing the critical current properties for the MgB2 wire when the final packing density is saturated after a number of drawing processes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.X. Xi, Rep. Prog. Phys. 71, 116501 (2008)

  2. E.W. Collings, M.D. Sumption, M. Bhatia, M.A. Susner, S.D. Bohnenstiehl, Supercond. Sci. Technol. 21, 103001 (2008)

    Article  CAS  Google Scholar 

  3. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, 1 (2001)

    Article  Google Scholar 

  4. W.K. Yeoh, S.X. Dou, Physica C 456, 170 (2007)

    Article  CAS  Google Scholar 

  5. R.M. Scanlan, A.P. Malozemoff, D.C. Larbalestier, P. IEEE 92, 1639 (2004)

    Article  CAS  Google Scholar 

  6. R. Penco, G. Grasso, IEEE T. Appl. Supercon. 17, 2291 (2007)

    Article  CAS  Google Scholar 

  7. T. Yagai, S. Mizuno, T. Okubo, S. Mizuochi, M. Kamibayashi, M. Jimbo, T. Takao, N. Hirano, Y. Makida, T. Shintomi, T. Komagome, K. Tsukada, T. Onji, Y. Arai, A. Ishihara, M. Tomita, D. Miyagi, M. Tsuda, T. Hamajima, Cryogenics 96, 75 (2018)

    Article  CAS  Google Scholar 

  8. M.A. Susner, T.J. Haugan, A review of the state-of-the-art superconductor technology for high power applications. Paper presented at the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, 12-14 July 2018

  9. D. Zhang, C. Kovacs, J. Rochester, M. Majoros, F. Wan, M.D. Sumption, E.W. Collings, M. Rindfleisch, D. Panik, D. Doll, R. Avonce, M. Tomsic, C. Poole, L. Sabri, T. Baig, M. Martens, Supercond. Sci. Technol. 31, 85013 (2018)

    Article  CAS  Google Scholar 

  10. H. Tanaka, T. Suzuki, M. Kodama, T. Koga, H. Watanabe, A. Yamamoto, A.L.M. Wire, IEEE T. Appl. Supercon. 30, 6200105 (2020)

    Article  Google Scholar 

  11. B.A. Glowacki, M. Majoros, Physica C 372–376, 1235 (2002)

    Article  Google Scholar 

  12. R. Flükiger, H.L. Suo, N. Musolino, C. Beneduce, P. Toulemonde, P. Lezza, Physica C 385, 286 (2003)

    Article  Google Scholar 

  13. M. Kodama, K. Tanaka, K. Okamoto, A. Yamamoto, J. Shimoyama, Mater. Res. Express 6, 026003 (2019)

    Article  CAS  Google Scholar 

  14. L.B.S. Da Silva, R.G. Souza, A.A. Vianna, E.J. Ribeiro, P.M. Pinto, H. Rigamonti, D. Rodrigues, IEEE T. Appl. Supercon. 28, 6200604 (2018)

    Article  Google Scholar 

  15. B. Yoo, Y. Gyun, K. Jiman, S. Jang, D. Young, H. Jung, T. Lee, Y. Suk, C. Seungyong, H. Haigun, Met. Mater. Int. 25, 1467 (2019)

    Article  CAS  Google Scholar 

  16. A. Yamamoto, J.I. Shimoyama, K. Kishio, T. Matsushita, Supercond. Sci. Technol. 20, 658 (2007)

    Article  CAS  Google Scholar 

  17. M. Kodama, Y. Ichiki, K. Tanaka, K. Okamoto, A. Yamamoto, J.I. Shimoyama, Supercond. Sci. Technol. 27, 055003 (2014)

    Article  CAS  Google Scholar 

  18. M. Kodama, T. Suzuki, H. Tanaka, K. Okishiro, K. Okamoto, G. Nishijima, A. Matsumoto, A. Yamamoto, J.I. Shimoyama, K. Kishio, Supercond. Sci. Technol. 30, 044006 (2017)

    Article  CAS  Google Scholar 

  19. A. Morawski, T. Cetner, D. Gajda, A.J. Zaleski, W. Haßler, K. Nenkov, M.A. Rindfleisch, M. Tomsic, P. Przysłupski, Supercond. Sci. Technol. 31, 075008 (2018)

    Article  CAS  Google Scholar 

  20. S. Shima, M. Oyane, Int. J. Mech. Sci. 18, 285 (1976)

    Article  Google Scholar 

  21. A.L. Gurson, J. Eng. Mater.-T. ASME 99, 2 (1977)

  22. Y.-S. Lee, Met. Mater. Int. 12, 161 (2006)

    Article  Google Scholar 

  23. Y. Seong, D. Yim, M. Ji, J. Jeong, M. Park, S. Jin, P. Hyoung, S. Kim, Met. Mater. Int. 26, 221 (2020)

    Article  CAS  Google Scholar 

  24. R. Shah, S. Tangrila, S. Rachakonda, M. Thirukkonda, J. Electron. Mater. 24, 1781 (1995)

    Article  CAS  Google Scholar 

  25. M. Eriksen, J.I. Bech, B. Seifi, N. Bay, IEEE T. Appl. Supercon. 11, 3756 (2001)

    Article  Google Scholar 

  26. J.I. Bech, M.S. Nielsen, M. Eriksen, F. Toussaint, P. Doremus, N. Bay, CIRP Ann.-Manuf. Techn. 50, 201 (2001)

    Article  Google Scholar 

  27. N. Bay, M.S. Nielsen, J. Mater. Process. Tech. 151, 18 (2004)

    Article  CAS  Google Scholar 

  28. M.H. Hancock, N. Bay, IEEE T. Appl. Supercon. 17, 3054 (2007)

    Article  CAS  Google Scholar 

  29. Y. Lu, Adv. Eng. Res. 128, 233 (2017)

    Google Scholar 

  30. M.S. Nielsen, N. Bay, M. Eriksen, J.I. Bech, M.H. Hancock, Powder Technol. 161, 220 (2006)

    Article  CAS  Google Scholar 

  31. L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, B.C. Hancock, Int. J. Solids Struct. 45, 3088 (2008)

    Article  Google Scholar 

  32. H. Shin, J.B. Kim, Powder Technol. 280, 94 (2015)

    Article  CAS  Google Scholar 

  33. D. Hibbit, B. Karlsson, P. Sorensen, ABAQUS/Theory User’s Manual, (Hibbitt, Karlsson & Sorensen, Inc., Rhode Island, (2006)

  34. P. Duda, Int. J. Mech. Sci. 107, 201 (2016)

    Article  Google Scholar 

  35. X. Zhang, H. Jiang, T. Luo, L. Hu, G. Li, J. Cui, Int. J. Mech. Sci. 156, 261 (2019)

    Article  Google Scholar 

  36. G. Milton, A. Sawicki, Appl. Mech. Rev. 56, B27 (2003)

    Article  Google Scholar 

  37. S.P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1970)

  38. G. Vega, A. Haddi, A. Imad, Mater. Design 30, 3308 (2009)

    Article  CAS  Google Scholar 

  39. H. Park, S.-H. Kim, W.-J. Lee, J.-W. Ha, S.-J. Kim, H.-J. Lee, Met. Mater. Int. 27, 2220 (2021)

  40. Z. Han, P. Skov-Hansen, T. Freltoft, Supercond. Sci. Technol. 10, 371 (1997)

    Article  CAS  Google Scholar 

  41. A. Matsumoto, H. Kumakura, H. Kitaguchi, H. Fujii, K. Togano, Physica C 382, 207 (2002)

    Article  CAS  Google Scholar 

  42. M.H. Apperley, C.C. Sorrell, A. Crosky, J. Mater. Process. Tech. 102, 193 (2000)

    Article  Google Scholar 

  43. Z. Han, T. Freltoft, Appl. Supercond. 2, 201 (1994)

    Article  CAS  Google Scholar 

  44. J. Qi, X. Liu, H. Gao, J. Chen, X. Hu, S. Yan, Int. J. Mech. Sci. 165, 105152 (2020)

    Article  Google Scholar 

  45. D.A. Korzekwa, J.F. Bingert, E.J. Podtburg, P. Miles, Appl. Supercond. 2, 261 (1994)

    Article  CAS  Google Scholar 

  46. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)

    Article  CAS  Google Scholar 

  47. T. Matsushita, J. Tanigawa, M. Kiuchi, A. Yamamoto, J.I. Shimoyama, K. Kishio, Jpn. J. Appl. Phys. 51, 123103 (2012)

    Article  CAS  Google Scholar 

  48. M. Kulich, P. Kováč, M. Hain, A. Rosová, E. Dobročka, Supercond. Sci. Technol. 29, 035004 (2016)

    Article  CAS  Google Scholar 

  49. M. Akdoʇan, H. Yetiş, D. Gajda, F. Karaboʇa, A.T. Ülgen, E. Demirtürk, I. Belenli, J. Alloy. Compd. 649, 1007 (2015)

    Article  CAS  Google Scholar 

  50. J. Avronsart, C. Berriaud, X. Chaud, C. Hilaire, M. Kazazi, D. Nardelli, M. Tropeano, IEEE T. Appl. Supercon. 28, 6200305 (2018)

    Article  Google Scholar 

  51. J.W. Yoon, D.Y. Yang, K. Chung, Comput. Methods Appl. Mech. Eng. 174, 23 (1999)

    Article  Google Scholar 

  52. J. Lee, D. Kim, Y.S. Lee, H.J. Bong, F. Barlat, M.G. Lee, Comput. Methods Appl. Mech. Eng. 286, 63 (2015)

    Article  Google Scholar 

  53. B. Tang, F. Wu, Z. Wang, S. Zhang, Int. J. Mech. Sci. 157–158, 384 (2019)

    Article  Google Scholar 

  54. H. Yang, H. Li, J. Ma, Z. Zhang, J. Chen, Int. J. Mech. Sci. 157–158, 574 (2019)

    Article  Google Scholar 

  55. H. Choi, J.W. Yoon, Comput. Method. Appl. M. 345, 123 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Industrial Technology Innovation Program (Project number: 10053590 and N0002598) funded by the Ministry of Trade, Industry & Energy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong-Hoon Kang or Jeong Whan Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Based on the incremental elastoplasticity theory, the plastic strain increment \(\Delta {\varepsilon }_{ij}^{pl}\) is written as

$$\Delta {\varepsilon }_{ij}^{pl}=\Delta \lambda \frac{\partial Q}{\partial {\sigma }_{{\varvec{i}}{\varvec{j}}}}$$
(21)

where \(\Delta \lambda\) is a plastic multiplier indicating the magnitude of plastic deformation and \(Q\) is a plastic potential function that is continuously differentiable. In Chapter 2, the plastic potential functions of the modified DPC model are expressed as a function of the first and second stress invariants. The Eq. (21) can be expressed by the following equation by hydrostatic-deviatoric decomposition.

$$\Delta {\varepsilon }_{ij}^{pl}=\Delta \lambda \left(\frac{\partial p}{\partial {\sigma }_{ij}}\frac{\partial Q}{\partial p}+\frac{\partial q}{\partial {\sigma }_{ij}}\frac{\partial Q}{\partial q}\right)=\frac{\Delta \lambda }{3}\frac{\partial Q}{\partial p}{\delta }_{ij}+\frac{3\Delta \lambda }{2q}\frac{\partial Q}{\partial q}{S}_{ij}$$
(22)

where \(p\), \(q\), \({\delta }_{ij}\) and \({S}_{ij}\) are the hydrostatic pressure, the von Mises equivalent stress, the Kronecker delta, and the deviatoric stress tensor, respectively.

The plastic multiplier, \(\Delta \lambda\) which is an unknown parameter, can be determined by the following consistency conditions for the return-mapping method.

$$\Phi =F\left({{\varvec{\sigma}}}_{n}+\Delta{\varvec{\sigma}}\right)-\rho \left({\overline{\varepsilon }}_{n}+\Delta {\overline{\varepsilon }}^{pl}\right)=F\left({{\varvec{\sigma}}}_{n+1}^{trial}-\Delta {\lambda }_{n+1}{{\varvec{C}}}^{{\varvec{e}}}\frac{\partial Q\left({{\varvec{\sigma}}}_{n+1}\right)}{\partial{\varvec{\sigma}}}\right)-\rho \left(\Delta {\overline{\varepsilon }}_{n}^{pl}+\Delta {\lambda }_{n+1}\right)=0$$
(23)

where \(F\) is the yield function for the modified DPC model, \(\rho\) is the hardening function, \({{\varvec{\sigma}}}_{n+1}^{trial}={{\varvec{\sigma}}}_{n}+{{\varvec{C}}}^{{\varvec{e}}}\Delta{\varvec{\varepsilon}}\) is the trial stress, and \({{\varvec{C}}}^{{\varvec{e}}}\) is the elastic tangent modulus.

In the iterative process, the potential residual \(R\) is checked by following violated consistency conditions at each iteration \((k)\). When the potential residual is smaller than the tolerance, the stress integration procedure ends.

$$R=F\left({{\varvec{\sigma}}}_{n+1}^{trial}-\Delta {\lambda }_{n+1}^{(k)}{{\varvec{C}}}^{{\varvec{e}}}\frac{\partial Q\left({{\varvec{\sigma}}}_{n+1}^{(k)}\right)}{\partial{\varvec{\sigma}}}\right)-\rho \left(\Delta {\overline{\varepsilon }}_{n}^{pl}+\Delta {\lambda }_{n+1}^{\left(k\right)}\right)-\Phi$$
(24)

More information about the stress update algorithm can be found in [51,52,53,54,55].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, YS., Lee, H., Chung, KC. et al. Superconducting MgB2 Wire Drawing Considering Anisotropic Hardening Behavior and Hydrostatic Effect. Met. Mater. Int. 28, 1697–1710 (2022). https://doi.org/10.1007/s12540-021-01023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01023-5

Keywords

Navigation