Skip to main content
Log in

Prediction of Gurson Damage Model Parameters Coupled with Hardening Law Identification of Steel X70 Pipeline Using Neural Network

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The Gurson–Tvergaard–Needleman damage model (GTN) describes the three stages of ductile tearing of steel: nucleation, growth and coalescence of micro-voids. This work is divided into two main parts. In the first part, based on the inverse analysis and the comparison between the experimental and numerical data, the parameters of the GTN damage model in conjunction with the hardening law are determined. The identification is broadened to include a considerable number of experimental tests drawn from our previous works and other works done at ALFAPIPE Ghardaia laboratory. In the second part, an Artificial Neural Network model is developed to predict the parameters of the (GTN) model coupled with the hardening law that goes through the prediction of traction and impact properties of API X70 steel pipe depending on its chemical composition. The weight of the chemical elements in percentages is considered as the inputs and the GTN parameters are considered as the outputs. In order to validate the obtained ANNGTN parameters, traction and impact tests are simulated. The numerical results are compared with the experimental ones and revealed that the developed model is very precise and has the potential to capture the interaction of GTN parameters coupled with hardening law and chemical composition of steel pipelines.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. H. Klippel, M. Gerstgrasser, D. Smolenicki, E. Cadoni, H. Roelofs, P. Wegener, arXiv (2020). https://arxiv.org/abs/2007.14087

  2. D. Madhusudhan, S. Chand, S. Ganesh, U. Saibhargavi, IOP Conf. Ser. Mat. Sci. 330, 012013 (2018)

  3. A. Nazari, Comp. Mater. Sci. 51, 225 (2012)

    Article  CAS  Google Scholar 

  4. K. Senthil, M.A. Iqbal, P. Bhargava, N.K. Gupta, Procedia Engineer. 173, 369 (2017)

    Article  Google Scholar 

  5. X.L. Zhang, Y.M. Mi, T. Ji, H.X. Xu, Y.T. Xie, Y. Shen, Adv. Mater. Res. 97-101, 278 (2010)

    Article  CAS  Google Scholar 

  6. V. Tvergaard, A. Needleman, Acta Metall. 32, 157 (1984)

    Article  Google Scholar 

  7. A.L. Gurson, J. Eng. Mater. Technol. 99, 2–15 (1977)

  8. V. Tvergaard, Int. J. Fracture 17, 389 (1981)

    Article  Google Scholar 

  9. V. Tvergaard, Int. J. Fracture 18, 237 (1982)

    Article  Google Scholar 

  10. J. Hancock, A. Mackenzie, J. Mech. Phys. Solids 24, 147 (1976)

    Article  Google Scholar 

  11. E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113, 124 (2016)

    Article  CAS  Google Scholar 

  12. L. Sharma, R. Chhibber, Int. J. Pres. Ves. Pip. 171, 51 (2019)

    Article  CAS  Google Scholar 

  13. J. Lu, O. Omotoso, J.B. Wiskel, D.G. Ivey, H. Henein, Metall. Mater. Trans. A 43, 3043 (2012)

    Article  CAS  Google Scholar 

  14. A. Saoudi, M. Fellah, A. Sedik, D. Lerari, F. Khamouli, L. Atoui, K. Bachari, Eng. Sci. Technol. 23, 452 (2020)

    Google Scholar 

  15. P.S. Bandyopadhyay, S. Kundu, S.K. Ghosh, S. Chatterjee, Metall. Mater. Trans. A 42, 1051 (2011)

    Article  CAS  Google Scholar 

  16. W.W. Bose-Filho, A.L.M. Carvalho, M. Strangwood, Mater. Charact. 58, 29 (2007)

    Article  CAS  Google Scholar 

  17. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 675, 153 (2016)

    Article  CAS  Google Scholar 

  18. B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Mater. Sci. Eng. A 527, 1595 (2010)

    Article  CAS  Google Scholar 

  19. P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 97, 392 (2015)

    Article  CAS  Google Scholar 

  20. M.S. Mohebbi, M. Rezayat, M.H. Parsa, Š Nagy, M. Nosko, Mater. Sci. Eng. A 723, 194 (2018)

    Article  CAS  Google Scholar 

  21. C. Wang, X. Wu, J. Liu, N. Xu, Mater. Sci. Eng. A 438–440, 267 (2006)

    Article  CAS  Google Scholar 

  22. M. Asadipoor, J. Kadkhodapour, A.P. Anaraki, S.M.H. Sharifi, A.C. Darabi, A. Barnoush, Met. Mater. Int. https://doi.org/10.1007/s12540-020-00681-1

  23. N. Amirjani, M. Ketabchi, M. Eskandari, M. Hizombor, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00841-3

  24. T.-W. Hong, S.-I. Lee, J.-H. Shim, M.-G. Lee, J. Lee, B. Hwang, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-021-00982-z

  25. A.F.A. El-Rehim, D.M. Habashy, H.Y. Zahran, H.N. Soliman, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00940-1

  26. L. Xue, Ductile fracture modeling : theory, experimental investigation and numerical verification, Ph.D. Thesis, Massachusetts Institute of Technology (2007). http://hdl.handle.net/1721.1/40876

  27. A. Needleman, V. Tvergaard, Int. J. Fracture 101, 73 (2000)

    Article  CAS  Google Scholar 

  28. M.H. Miloud, I. Zidane, M. Mendas, Frat. Integrità Strutt. 13, 630 (2019)

    Article  Google Scholar 

  29. Abaqus, Analysis user’s manual, Version 6.12 (2012)

  30. A. Gavrus, Identification automatique des paramètres rhéologiques par analyse inverse, Ph.D. Thesis, ​École Nationale Supérieure des Mines de Paris (1996)

  31. S. Diot, D. Guines, A. Gavrus, E. Ragneau, J. Eng. Mater. Technol. 131, 011001 (2009)

    Article  CAS  Google Scholar 

  32. M. Kuna, M. Springmann, in Fracture of Nano and Engineering Materials and Structures, ed. by E.E. Gdoutos (Springer, Berlin, 2006), pp. 535-536

    Google Scholar 

  33. M. Djouabi, A. Ati, P.-Y. Manach, Int. J. Damage Mech 28, 427 (2019)

    Article  CAS  Google Scholar 

  34. B. Paermentier, R. Hojjati Talemi, Frat. Integrità Strutt. 52, 105 (2020)

    Article  Google Scholar 

  35. Y. Ledoux, S. Samper, H. Favreliere, F. Formosa, E. Pairel, R. Arrieux, Arch. Civ Mech. Eng. 6, 5 (2006)

    Article  Google Scholar 

  36. F. Abbassi, T. Belhadj, S. Mistou, A. Zghal, Mater. Design 45, 605 (2013)

    Article  Google Scholar 

  37. D.J. Higham, N.J. Higham, MATLAB Guide, 3rd ed. (SIAM, Philadelphia, 2016)

  38. S. Nanthakumar, T. Lahmer, X. Zhuang, G. Zi, T. Rabczuk, Inverse Probl. Sci. En. 24, 153 (2016)

    Article  Google Scholar 

  39. M.O. Mbereick, O. Bouledroua, Z. Azari, M.H. Meliani, Revue Nature et Technologie 7, 27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Khatir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouladbrahim, A., Belaidi, I., Khatir, S. et al. Prediction of Gurson Damage Model Parameters Coupled with Hardening Law Identification of Steel X70 Pipeline Using Neural Network. Met. Mater. Int. 28, 370–384 (2022). https://doi.org/10.1007/s12540-021-01024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01024-4

Keywords

Navigation