Skip to main content
Log in

Enhanced electrical and thermoelectric power properties of BaWO4/CaWO4 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Powdered xBaWO4/(1 − x)CaWO4 where (x = 0,0.25,0.5,0.75,1) nanocomposites were synthesized by the co-precipitation method at room temperature (RT). We are reporting DC and AC conductivity and dielectric properties of nanocomposites at room temperature (RT). Structural characterization and HRTEM image confirm interface formation of the nanocomposites. The current density–electric field (i.e., J–E) characteristics of the nanocomposites’ studies reveal excellent varistor behavior. Dielectric properties were measured in the frequency 20 Hz–3 MHz at room temperature (RT). The dielectric constant was found to be higher for C2 (0.5BaWO4/0.5CaWO4) nanocomposites as compared to single phase and was maximum for atomic ratio (Ba/Ca) with optimal value of ‘x’. DC conductivity (σdc), calculated from Jonscher’s power law, of C2 (0.5BaWO4/0.5CaWO4) nanocomposites interfaced is higher than that of single phase, respectively. Enhanced AC conductivity is also observed for C2 (0.5BaWO4/0.5CaWO4) nanocomposites. These enhanced electrical properties of C2 (0.5BaWO4/0.5CaWO4) nanocomposites are due to the space charge layer (SCL) formation at the interface. In detail, conduction models for all the nanocomposites are explained. Thermopower investigations on the nanocomposites resulted in Seebeck coefficient (S) showing a transition from negative to positive values with confirmation n-type semiconductors at room temperature (RT). The enhanced power factor of C3 (0.75BaWO4/0.25CaWO4) nanocomposites is at higher temperature as compared to other nanocomposites. This C2 (0.5BaWO4/0.5CaWO4) nanocomposite can be considered as an efficient multifunctional nanocomposites due to its enhanced optical and electrical properties, and C3 (0.75BaWO4/ 0.25CaWO4) nanocomposite is very good efficient thermoelectric power devices at higher temperature application.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.W. Liao, Y.F. Wang, Y.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chem. Mater. 12(10), 2819–2821 (2000). https://doi.org/10.1021/cm000096w

    Article  Google Scholar 

  2. Qiao Zhang, XianyuChen Wei-TangYao, YibingFu LiweiZhu, Guobin Zhang, Shu-HongYu. LiusiSheng, Nearly monodisperse tungstate MWO4 microspheres (M=Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth Design. 7(8), 1423–1431 (2007). https://doi.org/10.1021/cg060827q

    Article  Google Scholar 

  3. E. Gurman, E. Daniels, J.S. King, Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys. 55(3), 1093–1097 (1971). https://doi.org/10.1063/1.1676191

    Article  ADS  Google Scholar 

  4. S.D. Colson, K.N. Wong, Overtone spectra of crystalline CaWO4: vibrational exciton density-of-states functions. Chem. Phys. 69, 223–228 (1982). https://doi.org/10.1016/0301-0104(82)88149-4

    Article  Google Scholar 

  5. J. Maier, Point defect thermodynamics: Macro- vs. Nanocrystals Electrochem. 68, 395–402 (2000). https://doi.org/10.5796/electrochemistry.68.395

    Article  Google Scholar 

  6. H.L. Tuller, Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2), 143–157 (2000). https://doi.org/10.1016/S0167-2738(00)00629-9

    Article  Google Scholar 

  7. N. Sata, K. Eberl, K. Eberman, J. Maier, Mesoscopic fast ion conduction in nanometer-scale planar heterostructures. Nature 408, 946–949 (2000). https://doi.org/10.1038/35050047

    Article  ADS  Google Scholar 

  8. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, Defect and transport properties of nanocrystalline CeO2−x. Appl. Phys. Letters. 69(2), 185–187 (1996). https://doi.org/10.1063/1.117366

    Article  ADS  Google Scholar 

  9. A. Tschope, Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 139(3–4), 267–280 (2001). https://doi.org/10.1016/S0167-2738(01)00677-4

    Article  Google Scholar 

  10. S. Kim, J. Maier, On the conductivity mechanism in nanocrystalline ceria. J. Electrochem. Soc. 149(19), J73–J83 (2002). https://doi.org/10.1149/1.1507597

    Article  Google Scholar 

  11. E. Fabbri, D. Pergolesi, E. Traversa, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mat. 11(9), 054503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503

    Article  Google Scholar 

  12. J. Maier, Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mat. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513

    Article  Google Scholar 

  13. M. Joachim, Defect chemistry and ion transport in nanostructured materials: Part II Aspects of nanoionics. Solid State Ion. 157(1–4), 327–334 (2003). https://doi.org/10.1016/S0167-2738(02)00229-1

    Article  Google Scholar 

  14. S. Takai, K. Sugiura, T. Esaka, Ionic conduction properties of Pb1-xMxWO4+d (M=Pr, Tb) Mater. Res. Bull. 234, 193–202 (1999). https://doi.org/10.1016/S0025-5408(99)00010-0

    Article  Google Scholar 

  15. Y. Li, Z. Wang, L. Sun, Z. Wang, S. Wang, X. Liu, Y. Wang, Investigation of oxygen vacancy and photoluminescence in calcium tungstate nanophosphors with different particle sizes. Mater. Res. Bull. 50, 36–41 (2014). https://doi.org/10.1016/j.materresbull.2013.10.022

    Article  Google Scholar 

  16. N. Dirany, E. Mcrae, M. Arab, Morphological and structural investigation of SrWO4 microcrystals in relationship with the electrical impedance properties. CrystEngComm 19(34), 5008–5021 (2017). https://doi.org/10.1039/C7CE00802C

    Article  Google Scholar 

  17. A. Tschope, J.Y. Ying, H.L. Tuller, Catalytic redox activity and electrical conductivity of nanocrystalline non-stoichiometric cerium oxide. Sensors Actuators, B: Chem. 31(1–2), 111–114 (1996). https://doi.org/10.1016/0925-4005(96)80025-6

    Article  Google Scholar 

  18. J.H. Hwang, T.O. Mason, Defect chemistry and transport properties of nanocrystalline cerium oxide. Z. Phys. Chem. 207, 21–38 (1998). https://doi.org/10.1524/zpch.1998.207.Part_1_2.021

    Article  Google Scholar 

  19. I. Kosacki, T. Suzuki, H.U. Anderson, in: E.D. Wachsman,M.-L. Liu, J.R. Akridge, N. Yamazoe ŽEds. (1999) Nanocrystalline Oxide Thin Films for Electrochemical Devices, Solid State Ionic Devices, ECS Proceedings, Electrochemical Society, Pennington, vol. 99(13): 190–198. ISBN:1–56677–235–4

  20. Y.-M. Chiang, E.B. Lavik, D.A. Blom, Defect thermodynamics and electrical properties of nanocrystalline oxides: pure and doped CeO2. Nanostruct. Mater. 9(1–8), 633–642 (1997). https://doi.org/10.1016/S0965-9773(97)00142-6

    Article  Google Scholar 

  21. M.A. Rigdon, R.E. Grace, Electrical charge transport in single crystal CaWO4. J. Amer. Ceram. Soc. 56, 475 (1973). https://doi.org/10.1111/j.1151-2916.1973.tb12527.x

    Article  Google Scholar 

  22. Sung Hun Yoon, Dong-Wan. Kim, Seo-Yong. Cho, Kug Sun Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. European Ceramic Society. 26, 2051–2054 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.058

    Article  Google Scholar 

  23. Marjeta Macek Krmmanc, Manca Logar, Bojan Budic, Danilo Suvorov, Dielectric and microstructural study of the SrWO4, BaWO4, and CaWO4 Scheelite Ceramics. J. Am. Ceramic Society. 94(8), 2464–2472 (2011). https://doi.org/10.1111/j.1551-2916.2010.04378.x

    Article  Google Scholar 

  24. N.B. Brese, M. O’Keefe, Bond-valence parameters for solids. Acta Crystallography, B 47, 192–197 (1991). https://doi.org/10.1107/S0108768190011041

    Article  Google Scholar 

  25. N. Aloysius, M.S. Rintu, E.M. Muhammed, T. Varghese, Dielectric studies of nanocrystalline calcium tungstate. Nanosystems: Phys. Chem. Math. 7(4), 599–603 (2016). https://doi.org/10.17586/2220-8054-2016-7-4-599-603

    Article  Google Scholar 

  26. Ananda Kumar V M. (2019) DC conductivity of nanocrystalline calcium tungstate, International Journal of scientific Research and Reviews, 8(2):1605–1621. ISSN: 2279–0543.

  27. Sung Hun Yoon, Geun-Kyu. Choi, Dong-Wan. Kim, Seo-Yong. Cho, Kug Sun Hong, Mixture behavior and microwave dielectric properties of (1–x) CaWO4–xTiO2. J. European Ceramic Society. 27(8–9), 3087–3091 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.035

    Article  Google Scholar 

  28. J. Lv, E.-C. Xiao, X.-H. Li, X. Dong, Y. Chen, Z. Yue, F. Shi, Crystal structures, dielectric properties, and lattice vibrational characteristics of (1–x) CaWO4-xTiO2 composite ceramics. Ceram. Int. 46(3), 3715–3724 (2019). https://doi.org/10.1016/j.ceramint.2019.10.092

    Article  Google Scholar 

  29. Eung Soo Kim, Soon Ho Kim, Effects of structural characteristics on microwave dielectric properties of (1–x)CaWO4-xLaNbO4 ceramics. J. Electroceram. 17, 471–477 (2006). https://doi.org/10.1007/s10832-006-8571-7

    Article  Google Scholar 

  30. G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Ceram. Soc. 27, 3063–3067 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.037

    Article  Google Scholar 

  31. B. Wang, Y.B. Pu, N. Xu, H.D. Wu, K. Chen, Dielectric properties of barium titanate–molybdenum composite. Ceram. Int. 38S, S37–S40 (2012). https://doi.org/10.1016/j.ceramint.2011.04.044

    Article  Google Scholar 

  32. E.C. Cristina, M.N. Alexandra, V.P. Mihai, A. Mirela, T. Sorin, S. Giorgio, G. Carmen, M. Liliana, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013). https://doi.org/10.1063/1.4792494

    Article  Google Scholar 

  33. R.N.P. Choudhary, Ratnakar Palai, S. Sharma, Structural, dielectric and electrical properties of lead cadmium tungstate ceramics. Mater. Sci. Eng. B. 77(3), 235–240 (2000). https://doi.org/10.1016/S0921-5107(00)00489-X

    Article  Google Scholar 

  34. M. Alim, Admittance frequency response in zinc oxide varistor ceramics. J. Am. Ceram. Soc. 72(1), 28–32 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05948.x

    Article  Google Scholar 

  35. S.A. Salehizadeh, H.M. Chenari, M. Shabani, H.A. Ahangar, R. Zamiri, A. Rebelo, J.S. Kumar, M.P.F. Graça, J.M.F. Ferreira, Structural and impedance spectroscopy characteristics of BaCO3/BaSnO3/SnO2 nanocomposite: observation of a non- monotonic relaxation behavior. RSC Adv. 8, 2100–2108 (2018). https://doi.org/10.1039/c7ra12442b

    Article  ADS  Google Scholar 

  36. L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, L. Liu, Electrocaloric effect in La-doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 44, 343–350 (2018). https://doi.org/10.1016/j.ceramint.2017.09.179

    Article  Google Scholar 

  37. S. Dewan, M. Tomar, R.P. Tandon, V. Gupta, Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode. J. Appl. Phys. 121, 215307 (2017). https://doi.org/10.1063/1.4984580

    Article  ADS  Google Scholar 

  38. A.U. Rahman, M.A. Rafiq, M.U. Hasan, M. Khan, S. Karim, S.O. Cho, Enhancement of electrical conductivity and dielectric constant in Sn-doped nanocrystalline CoFe2O4. J. Nanoparticle Res. 15, 1703 (2013). https://doi.org/10.1007/s11051-013-1703-5

    Article  ADS  Google Scholar 

  39. Q.Q. Yang, B. Meng, Z.L. Lin, X.K. Zhu, F. Yang, S. Wu, Effect of sintering temperature on the elemental diffusion and electrical conductivity of SrTiO3/YSZ composite ceramic. Ionics (Kiel) 23, 967–975 (2017). https://doi.org/10.1007/s11581-016-1866-z

    Article  Google Scholar 

  40. Y. Jing, N. Luo, S. Wu, K. Han, X. Wang, L. Miao, Y. Wei, Remarkably improved electrical conductivity of ZnO ceramics by cold sintering and post-heat-treatment. Ceram. Int. 44(16), 20570–20574 (2018). https://doi.org/10.1016/j.ceramint.2018.07.192

    Article  Google Scholar 

  41. R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27(2–3), 1059–1063 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.085

    Article  Google Scholar 

  42. A.D. Mani, I. Soibam, Dielectric, magnetic and optical properties of (Bi, Gd) FeO3–Ni0.8Zn0.2Fe2O4 nanocomposites. Ceram. Int. 44(2), 2419–2425 (2018). https://doi.org/10.1016/j.ceramint.2017.10.212

    Article  Google Scholar 

  43. Z. Wang, T. Wang, C. Wang, Y.J. Xiao, Mechanism of enhanced dielectric performance in Ba(Fe0.5Ta0.5)O3/poly(vinylidene fluoride) nanocomposites. Ceram. Int. 43(1), S244–S248 (2017). https://doi.org/10.1016/j.ceramint.2017.05.234

    Article  Google Scholar 

  44. J. Maier, Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005). https://doi.org/10.1038/nmat1513

    Article  ADS  Google Scholar 

  45. S. Kim, J. Fleig, J. Maier, Space charge conduction: simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria. Phys. Chem. Chem. Phys. 5(11), 2268–2273 (2003). https://doi.org/10.1039/B300170A

    Article  Google Scholar 

  46. N. Pryds, V. Esposito, when two become one: An insight into 2D conductive oxide interfaces. J Electroceram 38(1), 1–28 (2016). https://doi.org/10.1007/s10832-016-0051-0

    Article  Google Scholar 

  47. Prasad Narayan Patil, Uma Subramanian, M Jeyakanthan, Enhanced blue emission of CaWO4 in BaWO4/CaWO4 nanocomposite. J. Mater. Sci.: Mater. Electron. 31(9), 7260–7275 (2020). https://doi.org/10.1007/s10854-020-03298-7

    Article  Google Scholar 

  48. Chang Sung Lim. (2013) Cyclic Microwave Synthesis and Photoluminescence of Barium Tungstate Particles Assisted by A Solid-State Metathetic Reaction. Asian Journal of Chemistry. 25(1): 63–66. Doi: https://doi.org/10.14233/ajchem.2013.12636

  49. A. Olad, S. Shakoori, Sajedeh Mohammadi Aref, Investigation of nonlinear electrical properties of ZnO/PPy nanocomposite and its application as a low-voltage varistor. Phys. B 550, 127–135 (2018). https://doi.org/10.1016/j.physb.2018.09.006

    Article  ADS  Google Scholar 

  50. C.W. Nan, D.K. Clarke, Effects of variations in grain size and grain boundary barrier heights on the current-voltage characteristics of ZnO varistors. J. Am. Ceram. Soc. 79(12), 3185–3192 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08094.x

    Article  Google Scholar 

  51. Y.S. Lee, T.Y. Tseng, Phase Identification and Electrical Properties in ZnO-Class Varistors. J. Am. Ceram. Soc. 75(6), 1636–1640 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04236.x

    Article  Google Scholar 

  52. T. Asokan, R. Freer, Dependence of ZnO varistor grain boundary resistance on sintering temperature. J. Mater. Sci. Lett. 13, 925–926 (1994). https://doi.org/10.1007/BF00701426

    Article  Google Scholar 

  53. F. Greuter, G. Blatter, Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semiconductor Sci. Technol. 5(2), 111–137 (1990). https://doi.org/10.1088/0268-1242/5/2/001

    Article  ADS  Google Scholar 

  54. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82(3), 485–502 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01793.x

    Article  Google Scholar 

  55. Mateus Gallucci Masteghin, Marcelo Ornaghi Orlandi, grain-boundary resistance and nonlinear coefficient correlation for SnO2-based varistors. Mater. Res. 19(6), 1286–1291 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0210

    Article  Google Scholar 

  56. T. Pompe, V. Srikant, D. Clarke, Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films Appl. Phys. Lett. 69, 4065–4067 (1996). https://doi.org/10.1063/1.117819

    Article  Google Scholar 

  57. G.D. Mahan, M. Levinson, H.R. Phillip, Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799–2812 (1979). https://doi.org/10.1063/1.326191

    Article  ADS  Google Scholar 

  58. E. Olsson, G. Dunlop, R. Osterlund, Characterization of individual interfacial barriers in a ZnO varistor material. J. Appl. Phys. 66, 3666–3675 (1989). https://doi.org/10.1063/1.344453

    Article  ADS  Google Scholar 

  59. R.A. De, Souza, The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 11, 9939–9969 (2009). https://doi.org/10.1039/B904100A

    Article  Google Scholar 

  60. A.Y. Neiman, Cooperative transport in oxides: Diffusion and migration processes involving Mo (VI), W&Q), V (V) and Nb (V). Solid State tonics 83(3–4), 263–273 (1996). https://doi.org/10.1016/0167-2738(95)00247-2

    Article  Google Scholar 

  61. E.C. Snelling, Soft Ferrites, 2nd Edition, Butterworth, London, pp. 34, (1988). ISBN-13: 978–0408027601

  62. R.B. Hilborn, Maxwell - Wagner polarization in sintered compacts of ferric oxide. J. Appl. Phys. 36, 1553–1557 (1965). https://doi.org/10.1063/1.1703085

    Article  ADS  Google Scholar 

  63. M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunkumar, H. Nithya, Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B: Condensed matter. 403(17), 2740–2747 (2008). https://doi.org/10.1016/j.physb.2008.02.001

    Article  ADS  Google Scholar 

  64. M. Ashokkumar, S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015). https://doi.org/10.1016/j.jlumin.2015.02.019

    Article  Google Scholar 

  65. M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283–291 (2015). https://doi.org/10.1016/j.jiec.2014.01.047

    Article  Google Scholar 

  66. S. Sagadevan, K. Pal, Z.Z. Chowdhury, M.E. Hoque, Structural, dielectric and optical investigation of chemically synthesized Ag doped ZnO nanoparticles composites. J. Sol-Gel Sci. Technol. 83(2), 394–404 (2018). https://doi.org/10.1007/s10971-017-4418-8

    Article  Google Scholar 

  67. T. Ahmad, H.L. Irfan, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles. New J. Chem. 40, 3216–3224 (2016). https://doi.org/10.1039/C5NJ02763B

    Article  Google Scholar 

  68. I. Tantis, G.C. Psarras, D. Tasis, Functionalized graphene–poly (vinyl alcohol) nanocomposites: physical and dielectric properties eXPRESS. Polym. Letters. 6(4), 283–292 (2012). https://doi.org/10.3144/expresspolymlett.2012.31

    Article  Google Scholar 

  69. S. Amrin, V.D. Deshpande, Dielectric relaxation and ac conductivity behavior of carboxyl functionalized multiwalled carbon nanotubes/poly (vinyl alcohol) composites. Physica E: Low dimensional systems and nanostructures. 87, 317–326 (2017). https://doi.org/10.1016/j.physe.2016.10.045

    Article  ADS  Google Scholar 

  70. W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Phys. B 534, 17–21 (2018). https://doi.org/10.1016/j.physb.2018.01.021

    Article  ADS  Google Scholar 

  71. R. J. Singh, Solid State Physics, Dorling Kindersley (India) (2012). ISNB:9788131754016 8131754014 9789332514812 933251481X

  72. Kapil Y. Salkar, R.B. Tangsali, R.S. Gad, N.K. Asnit Gangwar, Prasad. , Electrical properties of Zn(1–x)CoxO dilute magnetic semiconductor nanoparticles. J. Mat. Sci. Mat. Electronics. 30, 18374–18383 (2019). https://doi.org/10.1007/s10854-019-02191-2

    Article  Google Scholar 

  73. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3- 0.35BaTiO3 ceramics. J. Appl Physics. 121(8), (2017). https://doi.org/10.1063/1.4977107

    Article  ADS  Google Scholar 

  74. S.R. Alharbi, M. Alhassan, O. Jalled, S. Wageh, A. Saeed, Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single phase nanocrystallites synthesized via sucrose-assisted sol-gel combustion method. J. Mater. Sci. 53(18), 11584–11594 (2018). https://doi.org/10.1007/s10853-018-2458-2

    Article  ADS  Google Scholar 

  75. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  76. S. Shanmugapriya, S. Surendran, V.D. Nithya, P. Saravanan, R. Kalai Selvan, Temperature dependent electrical and magnetic properties of CoWO4 nanoparticles synthesized by sonochemical method. Mat. Sci. Eng: B. 214, 57–67 (2016). https://doi.org/10.1016/j.mseb.2016.09.002

    Article  Google Scholar 

  77. A. Singh, S. Suri, P. Kumar, B. Kaur, A.K. Thakur, V. Singh, Effect of temperature and frequency on electrical properties of composite multiferroic of lead titanate and strontium hex ferrite (PbTiO3SrFe12O19). J. Alloys Compounds 764, 599–615 (2018). https://doi.org/10.1016/j.jallcom.2018.06.071

    Article  Google Scholar 

  78. M.A. El-Hiti, AC electrical conductivity of Ni–Mg ferrites. J. Phys. D: Appl. Phys. 29, 501–505 (1996). https://doi.org/10.1088/0022-3727/29/3/002

    Article  ADS  Google Scholar 

  79. S.R. Elliot, Temperature dependence of a.c. conductivity of chalcogenide glasses. Philos. Mag. B. 37(5), 553–560 (1978). https://doi.org/10.1080/01418637808226448

    Article  ADS  Google Scholar 

  80. M. Vijayakumar, G. Hirankumar, M.S. Bhuvaneshwari, S. Selvasekarapandian, Influence of B2O3 doping on conductivity of LiTiO2 electrode material. J. Power Sources 117(1–2), 143–147 (2003). https://doi.org/10.1016/S0378-7753(03)00110-1

    Article  ADS  Google Scholar 

  81. J. Cao, W. Fan, H. Zheng, J. Wu, Thermoelectric effect across the metal-insulator domain walls in VO2 micro beams. Nano Lett. 9, 4001–4006 (2009). https://doi.org/10.1021/nl902167b

    Article  ADS  Google Scholar 

  82. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Thermoelectric power studies of Co–Cr nano ferrites. J. Alloy. Compd. 604, 276–280 (2014). https://doi.org/10.1016/j.jallcom.2014.03.097

    Article  Google Scholar 

  83. S. Gupta, Y.P. Yadav, R.A. Singh, Electrical transport properties of polycrystalline chromium vanadate. Z. Naturforsch. 42a, 577–581 (1987). https://doi.org/10.1515/zna-1987-0609

    Article  ADS  Google Scholar 

  84. Zhengang Zhang, Weiwei Zhao, Wanting Zhu, Shifang Ma, Cuncheng Li, Mu. Xin, Ping Wei, Xiaolei Nie, Qingjie Zhang, Wenyu Zhao, Preparation and Thermoelectric Performance of BaTiO3/Bi0.5Sb1.5Te3 Composite Materials. J. Electronic Mat. 49, 2794–2801 (2020). https://doi.org/10.1007/s11664-019-07851-x

    Article  ADS  Google Scholar 

  85. Karlheinz Seeger, Semiconductor Physics: An Introduction,Springer (2010). ISBN 978–3–662–09855–4

  86. Y. Liu, S. Zhang, Z. Han et al., Grain-size-dependent thermal conductivity of nanocrystalline materials. J. Nanopart. Res. 18(10), 296 (2016). https://doi.org/10.1007/s11051-016-3606-8

    Article  ADS  Google Scholar 

  87. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357–376 (2010). https://doi.org/10.1002/adfm.200901512

    Article  Google Scholar 

  88. D.M. Rowe, V.S. Shukla, N. Savvides, Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys. Nature 290, 765–766 (1981). https://doi.org/10.1038/290765a0

    Article  ADS  Google Scholar 

  89. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57(23), 14958–14973 (1998). https://doi.org/10.1103/PhysRevB.57.14958

    Article  ADS  Google Scholar 

  90. H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, F.P. Wang, Thermoelectric properties of Ca3−xYxCo4O9+δ ceramics. J. Phys. Chem. Solids 70(3–4), 600–603 (2009). https://doi.org/10.1016/j.jpcs.2009.01.003

    Article  ADS  Google Scholar 

  91. R. Yang, G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites. Physical Review B. 69(19), 195316(110), (2004). https://doi.org/10.1103/PhysRevB.69.195316

    ADS  Google Scholar 

  92. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  93. A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009). https://doi.org/10.1039/B822664B

    Article  Google Scholar 

  94. B. Liu, J. hu, J. Zhou, R. Yang., Thermoelectric transport in nanocomposites. Materials. 10(4), 418 (2017). https://doi.org/10.3390/ma10040418

    Article  ADS  Google Scholar 

  95. I. Levesque, P.-O. Bertrand, N. Blouin, M. Leclerc, S. Zecchin, G. Zotti, C.I. Ratcliffe, D.D. Klug, X. Gao, F. Gao, J.S. Tse, Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem. Mater. 19(8), 2128–2138 (2007). https://doi.org/10.1021/cm070063h

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa 403206, India, for making available all the facilities within the department.

Author information

Authors and Affiliations

Authors

Contributions

Prasad Narayan Patil performed conceptualization, investigation, visualization, review and editing, writing—original draft and validation. Uma Subramanian was involved in conceptualization, review, supervision. Rajeshkumar Shankar Hyam contributed to validation and supervision.

Corresponding author

Correspondence to Prasad Narayan Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.N., Subramanian, U. & Hyam, R.S. Enhanced electrical and thermoelectric power properties of BaWO4/CaWO4 nanocomposites. Appl. Phys. A 127, 731 (2021). https://doi.org/10.1007/s00339-021-04864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04864-4

Keywords

Navigation