Skip to main content

Advertisement

Log in

A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As a new low-cost photothermal nanoprobe, Prussian blue nanoparticles (PB NPs) have been demonstrated to have more potential in photothermometric-based point-of-care testing (POCT) application. However, most of the existing PB NP-based photothermometric sensors were constructed mainly relying on in situ generation of PB NPs or their combination with antigens and antibodies, therefore usually suffering from the inherent defects like complicated preparation and cumbersome surface process as well as high-cost modification. To break this limitation of PB NP-based photothermometric POCT, we proposed an ingenious redox reaction-controlled nanoprobe conversion strategy and successfully applied to photothermometric detection of ascorbate oxidase (AAO). In this design, the heat of PB NP photothermal system under 808-nm laser irradiation dramatically decreased with the addition of AA, due to a unique AA-induced Prussian blue to Prussian white (PB-to-PW) conversion. Upon AAO addition, the heat of reaction system increased because of the enzymatic catalytic reaction between AAO and AA, which led to a significant reduction of AA and resultantly inhibited PB-to-PW conversion. Such target-mediated nanoprobe conversion resulted in an obvious temperature change that could be easily detected by a common thermometer and exhibited good linear ranges from 0.25 to 14 mU/mL with a detection limit as low as 0.21 mU/mL for POCT analysis of AAO. This facile, convenient, and portable photothermometric sensing platform provides an innovative route for the design of PB NP nanoprobe-based photothermometric detection methods.

Graphical abstract

A sensitive photothermometric AAO sensor based on a redox reaction-controlled nanoprobe conversion strategy from Prussian blue to Prussian white.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen H, Liu Y, Li H, Zhang Y, Yao S. Non-oxidation reduction strategy for highly selective detection of ascorbic acid with dual-ratio fluorescence and colorimetric signals. Sensors Actuators B Chem. 2019;281:983–8. https://doi.org/10.1016/j.snb.2018.11.020.

    Article  CAS  Google Scholar 

  2. Wu Z, Nan D, Yang H, Pan S, Liu H, Hu X. A ratiometric fluorescence-scattered light strategy based on MoS2 quantum dots/CoOOH nanoflakes system for ascorbic acid detection. Anal Chim Acta. 2019;1091:59–68. https://doi.org/10.1016/j.aca.2019.09.054.

    Article  CAS  PubMed  Google Scholar 

  3. Ganiga M, Cyriac J. An ascorbic acid sensor based on cadmium sulphide quantum dots. Anal Bioanal Chem. 2016;408(14):3699–706. https://doi.org/10.1007/s00216-016-9454-7.

    Article  CAS  PubMed  Google Scholar 

  4. Ji D, Du Y, Meng H, Zhang L, Huang Z, Hu Y, Li J, Yu F, Li Z. A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sensors Actuators B Chem. 2018;256:512–9. https://doi.org/10.1016/j.snb.2017.10.070.

    Article  CAS  Google Scholar 

  5. Kalaiyarasan G, Joseph J. Efficient dual-mode colorimetric/fluorometric sensor for the detection of copper ions and vitamin C based on pH-sensitive amino-terminated nitrogen-doped carbon quantum dots: effect of reactive oxygen species and antioxidants. Anal Bioanal Chem. 2019;411(12):2619–33. https://doi.org/10.1007/s00216-019-01710-8.

    Article  CAS  PubMed  Google Scholar 

  6. Liu J, Wang L, Bao H. A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Anal Bioanal Chem. 2019;411(4):877–83. https://doi.org/10.1007/s00216-018-1505-9.

    Article  CAS  PubMed  Google Scholar 

  7. Arrigoni R, Arrigoni O. Multicopper oxidases: an innovative approach for oxygen management of aerobic organisms. Rend Fis Acc Lincei. 2009;21(1):71–80. https://doi.org/10.1007/s12210-009-0071-7.

    Article  Google Scholar 

  8. Wang B, Cao J, Dong Y, Liu F, Fu X, Ren S, Ma S, Liu Y. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem Commun. 2018;54(7):806–9. https://doi.org/10.1039/c7cc08132d.

    Article  CAS  Google Scholar 

  9. Luo J, Liang D, Li X, Liu S, Deng L, Ma F, Wang Z, Yang M, Chen X. Photoelectrochemical detection of human epidermal growth factor receptor 2 (HER2) based on Co3O4-ascorbic acid oxidase as multiple signal amplifier. Microchim Acta. 2021;188(5):166. https://doi.org/10.1007/s00604-021-04829-7.

    Article  CAS  Google Scholar 

  10. Wang M, Wang M, Wang G, Su X. A fluorescence “off-on-off” sensing platform based on bimetallic gold/silver nanoclusters for ascorbate oxidase activity monitoring. Analyst. 2020;145(3):1001–7. https://doi.org/10.1039/c9an02108f.

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, Pang S. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters. Microchim Acta. 2018;185(9):426. https://doi.org/10.1007/s00604-018-2954-8.

    Article  CAS  Google Scholar 

  12. Li N, Zhang F, Sun W, Zhang L, Su X. Redox reaction-modulated fluorescence biosensor for ascorbic acid oxidase assay by using MoS2 quantum dots as fluorescence probe. Talanta. 2021;222:121522. https://doi.org/10.1016/j.talanta.2020.121522.

    Article  CAS  PubMed  Google Scholar 

  13. Han X, Chen Z, Fan Q, Li K, Mu F, Luo Q, Jin Z, Shi G, Zhang M. Manganese(II)-doped zinc/germanium oxide nanoparticles as a viable fluorescent probe for visual and time-resolved fluorometric determination of ascorbic acid and its oxidase. Microchim Acta. 2019;186(7):466. https://doi.org/10.1007/s00604-019-3580-9.

    Article  CAS  Google Scholar 

  14. Fu G, Sanjay ST, Zhou W, Brekken RA, Kirken RA, Li X. Exploration of nanoparticle-mediated photothermal effect of TMB-H2O2 colorimetric system and its application in a visual quantitative photothermal immunoassay. Anal Chem. 2018;90(9):5930–7. https://doi.org/10.1021/acs.analchem.8b00842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Zou L, Yang X, Wang Q, Zheng Y, Geng X, Liao G, Nie W, Wang K. Point-of-care assay of alkaline phosphatase enzymatic activity using a thermometer or temperature discoloration sticker as readout. Anal Chem. 2019;91(12):7943–9. https://doi.org/10.1021/acs.analchem.9b01883.

    Article  CAS  PubMed  Google Scholar 

  16. He S, Hai J, Sun S, Lu S, Wang B. Palladium coordination polymers nanosheets: new strategy for sensitive photothermal detection of H2S. Anal Chem. 2019;91(16):10823–9. https://doi.org/10.1021/acs.analchem.9b02468.

    Article  CAS  PubMed  Google Scholar 

  17. Liu D, Tu Q, Han Y, Wang X, Kang Q, Wang P, Guo W. A dual-modal colorimetric and photothermal assay for glutathione based on MnO2 nanosheets synthesized with eco-friendly materials. Anal Bioanal Chem. 2020;412(30):8443–50. https://doi.org/10.1007/s00216-020-02982-1.

    Article  CAS  PubMed  Google Scholar 

  18. Tao Y, Luo F, Lin Y, Dong N, Li C, Lin Z. Quantitative gold nanorods based photothermal biosensor for glucose using a thermometer as readout. Talanta. 2021;230:122364. https://doi.org/10.1016/j.talanta.2021.122364.

    Article  CAS  PubMed  Google Scholar 

  19. Lu D, Jiang H, Zhang G, Luo Q, Zhao Q, Shi X. An in situ generated Prussian blue nanoparticle-mediated multimode nanozyme-linked immunosorbent assay for the detection of aflatoxin B1. ACS Appl Mater Interfaces. 2021;13(22):25738–47. https://doi.org/10.1021/acsami.1c04751.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X. Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer: a simple and universal biosensing platform. Anal Chem. 2020;92(3):2739–47. https://doi.org/10.1021/acs.analchem.9b04996.

    Article  CAS  PubMed  Google Scholar 

  21. Tao Y, Wang W, Fu C, Luo F, Guo L, Qiu B, Lin Z. Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Talanta. 2020;220:121398. https://doi.org/10.1016/j.talanta.2020.121398.

    Article  CAS  PubMed  Google Scholar 

  22. Du S, Wang Y, Liu Z, Xu Z, Zhang H. A portable immune-thermometer assay based on the photothermal effect of graphene oxides for the rapid detection of Salmonella typhimurium. Biosens Bioelectron. 2019;144:111670. https://doi.org/10.1016/j.bios.2019.111670.

    Article  CAS  PubMed  Google Scholar 

  23. Cai G, Yu Z, Tong P, Tang D. Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale. 2019;11(33):15659–67. https://doi.org/10.1039/c9nr05797h.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Yang L, Men C, Xie Y, Liu J, Zou H, Li Y, Zhan L, Huang C. Photothermal soft nanoballs developed by loading plasmonic Cu2-xSe nanocrystals into liposomes for photothermal immunoassay of aflatoxin B1. Anal Chem. 2019;91(7):4444–50. https://doi.org/10.1021/acs.analchem.8b05031.

    Article  CAS  PubMed  Google Scholar 

  25. Lv S, Zhang K, Tang D. A new visual immunoassay for prostate-specific antigen using near-infrared excited CuxS nanocrystals and imaging on a smartphone. Analyst. 2019;144(12):3716–20. https://doi.org/10.1039/c9an00724e.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang K, Zhou X, Xue X, Luo M, Liu X, Xue Z. Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect. Anal Bioanal Chem. 2021;413(14):3655–65. https://doi.org/10.1007/s00216-021-03312-9.

    Article  CAS  PubMed  Google Scholar 

  27. Huang L, Yu Z, Chen J, Tang D. Pressure-based bioassay perceived by a flexible pressure sensor with synergistic enhancement of the photothermal effect. ACS App Bio Mater. 2020;3(12):9156–63. https://doi.org/10.1021/acsabm.0c01447.

    Article  CAS  Google Scholar 

  28. Fu G, Sanjay ST, Dou M, Li X. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8(10):5422–7. https://doi.org/10.1039/c5nr09051b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei Y, Wang D, Zhang Y, Sui J, Xu Z. Multicolor and photothermal dual-readout biosensor for visual detection of prostate specific antigen. Biosens Bioelectron. 2019;140:111345. https://doi.org/10.1016/j.bios.2019.111345.

    Article  CAS  PubMed  Google Scholar 

  30. Hong G, Zhang D, He Y, Yang Y, Chen P, Yang H, Zhou Z, Liu Y, Wang Y. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Anal Bioanal Chem. 2019;411(26):6837–45. https://doi.org/10.1007/s00216-019-02049-w.

    Article  CAS  PubMed  Google Scholar 

  31. Peng X, Wang R, Wang T, Yang W, Wang H, Gu W, Ye L. Carbon dots/Prussian blue satellite/core nanocomposites for optical imaging and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(1):1084–92. https://doi.org/10.1021/acsami.7b14972.

    Article  CAS  PubMed  Google Scholar 

  32. Guo L, Zhang Y, Yu Y, Wang J. In situ generation of Prussian blue by MIL-53 (Fe) for point-of-care testing of butyrylcholinesterase activity using a portable high-throughput photothermal device. Anal Chem. 2020;92(21):14806–13. https://doi.org/10.1021/acs.analchem.0c03575.

    Article  CAS  PubMed  Google Scholar 

  33. Fu G, Liu W, Feng S, Yue X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun. 2012;48(94):11567–9. https://doi.org/10.1039/c2cc36456e.

    Article  CAS  Google Scholar 

  34. Fu G, Zhu Y, Xu K, Wang W, Hou R, Li X. Photothermal microfluidic sensing platform using near-infrared laser-driven multiplexed dual-mode visual quantitative readout. Anal Chem. 2019;91(20):13290–6. https://doi.org/10.1021/acs.analchem.9b04059.

    Article  CAS  PubMed  Google Scholar 

  35. Xue X, Gao M, Rao H, Luo M, Wang H, An P, Feng T, Lu X, Xue Z, Liu X. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles. Anal Chim Acta. 2020;1105:197–207. https://doi.org/10.1016/j.aca.2020.01.049.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng M, Peng W, Hua P, Chen Z, Sheng J, Yang J, Wu Y. In situ formation of pH-responsive Prussian blue for photoacoustic imaging and photothermal therapy of cancer. RSC Adv. 2017;7(30):18270–6. https://doi.org/10.1039/c7ra01879g.

    Article  CAS  Google Scholar 

  37. Han X, Lin S, Li Y, Cheng C, Han X. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Anal Chim Acta. 2020;1098:117–24. https://doi.org/10.1016/j.aca.2019.11.027.

    Article  CAS  PubMed  Google Scholar 

  38. Zhi L, Sun A, Tang D. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes. Analyst. 2020;145(12):4164–72. https://doi.org/10.1039/d0an00417k.

    Article  CAS  PubMed  Google Scholar 

  39. Farka Z, Cunderlova V, Horackova V, Pastucha M, Mikusova Z, Hlavacek A, Skladal P. Prussian blue nanoparticles as a catalytic label in a sandwich nanozyme-linked immunosorbent assay. Anal Chem. 2018;90(3):2348–54. https://doi.org/10.1021/acs.analchem.7b04883.

    Article  CAS  PubMed  Google Scholar 

  40. Fu G, Sanjay ST, Li X. Cost-effective and sensitive colorimetric immunosensing using an iron oxide-to-Prussian blue nanoparticle conversion strategy. Analyst. 2016;141(12):3883–9. https://doi.org/10.1039/c6an00254d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma H, He Y, Liu H, Xu L, Li J, Huang M, Wei Y. Anchoring of Prussian blue nanoparticles on polydopamine nanospheres as an efficient peroxidase mimetic for colorimetric sensing. Colloid Surface A. 2019;577:622–9. https://doi.org/10.1016/j.colsurfa.2019.06.035.

    Article  CAS  Google Scholar 

  42. Chen F, Teng L, Lu C, Zhang C, Rong Q, Zhao Y, Yang Y, Wang Y, Song G, Zhang X. Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via Prussian blue nanoprobe. Anal Chem. 2020;92(19):13452–61. https://doi.org/10.1021/acs.analchem.0c02859.

    Article  CAS  PubMed  Google Scholar 

  43. Zloczewska A, Celebanska A, Szot K, Tomaszewska D, Opallo M, Jönsson-Niedziolka M. Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosens Bioelectron. 2014;54:455–61. https://doi.org/10.1016/j.bios.2013.11.033.

    Article  CAS  PubMed  Google Scholar 

  44. Granica M, Tymecki L. Prussian blue (bio) sensing device for distance-based measurements. Anal Chim Acta. 2020;1136:125–33. https://doi.org/10.1016/j.aca.2020.08.037.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (21765013, 22064014), the Key Talent Project of Gansu Province (2019-115), the Feitian Scholar Program of Gansu Province, and the Opening Project of State Key Laboratory of Bioelectronics (No. Sklb2021p11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghong Rao or Zhonghua Xue.

Ethics declarations

Ethics approval and consent to participate

We state that all the experiments related to the human serum were performed in accordance with the guidelines on administration of our lab, and approved by the ethics committee at Northwest Normal University. Study participants were fully informed regarding the purposes of the study and consent was obtained.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/xxx.

ESM 1

(PDF 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Rao, ., Huang, H. et al. A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white. Anal Bioanal Chem 413, 6627–6637 (2021). https://doi.org/10.1007/s00216-021-03629-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03629-5

Keywords

Navigation