Skip to main content

Advertisement

Log in

Paper-based sensor from pyrrolidinyl peptide nucleic acid for the efficient detection of Bacillus cereus

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacillus cereus is one of the most common foodborne pathogens found in various kinds of staple foods such as rice and wheat. A rapid and accurate detection method for this pathogen is highly desirable for the sustainable production of relevant food products. While several classical and molecular-based detection methods are available for the identification of B. cereus, they suffered one or more limitations such as the requirement for a tedious and time-consuming process, less than ideal specificity, and the lack of portability. Herein, we developed the first paper-based sensing device that exhibits high species specificity with sufficiently low limit of detection for the visual detection of specific DNA sequences of B. cereus. The success is attributed to the strategic planning of fabrication in various dimensions including thorough bioinformatics search for highly specific genes, the use of the pyrrolidinyl peptide nucleic acid (PNA) probe whose selectivity advantage is well documented, and an effective PNA immobilization and DNA-binding visualization method with an internal cross-checking system for validating the results. Testing in rice matrices indicates that the sensor is capable of detecting and distinguishing B. cereus from other bacterial species. Hence, this paper-based sensor has potential to be adopted as a practical means to detect B. cereus in food industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett. 1997;157(2):223–8.

  2. Frenzel E, Kranzler M, Stark TD, Hofmann T, Ehling-Schulz M. The endospore-forming pathogen Bacillus cereus exploits a small colony variant-based diversification strategy in response to aminoglycoside exposure. mBio. 2015;6(6):e01172–15.

    Article  CAS  Google Scholar 

  3. Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol. 1994;76(S23):49S–60S.

    Article  Google Scholar 

  4. Ramarao N, Tran S-L, Marin M, Vidic J. Advanced methods for detection of Bacillus cereus and its pathogenic factors. Sensors. 2020;20(9):2667.

  5. Schulten SM, In’t Veld PH, Nagelkerke NJD, Scotter S, de Buyser ML, Rollier P, Lahellec C. Evaluation of the ISO 7932 standard for the enumeration of Bacillus cereus in foods. Int J. Food Microbiol. 2000;57(1):53–61.

  6. Chon J-W, Kim Y-J, Kim D-H, Song K-Y, Kim H, Seo K-H. Supplementation of modified mannitol-yolk-polymyxin B agar with cefuroxime for quantitative detection of Bacillus cereus in food. J Food Sci. 2019;84(1):133–7.

  7. Zhang Z, Feng L, Xu H, Liu C, Shah NP, Wei H. Detection of viable enterotoxin-producing Bacillus cereus and analysis of toxigenicity from ready-to-eat foods and infant formula milk powder by multiplex PCR. J Dairy Sci. 2016;99(2):1047–55.

  8. Sadek ZI, Abdel-Rahman MA, Azab MS, Darwesh OM, Hassan MS. Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes. Toxicol. Rep. 2018;5:871–7.

    Article  CAS  Google Scholar 

  9. Sánchez-Chica J, Correa MM, Aceves-Diez AE, Castañeda-Sandoval LM. A novel method for direct detection of Bacillus cereus toxin genes in powdered dairy products. Int. Diary J. 2020;103:104625.

    Article  Google Scholar 

  10. Yabutani M, Agata N, Ohta M. A new rapid and sensitive detection method for cereulide-producing Bacillus cereus using a cycleave real-time PCR. Lett Appl Microbiol. 2009;48(6):698–704.

  11. Fischer C, Hünniger T, Jarck J-H, Frohnmeyer E, Kallinich C, Haase I, Hahn U, Fischer M. Food sensing: aptamer-based trapping of Bacillus cereus spores with specific detection via real time PCR in milk. J Agric Food Chem. 2015;63(36):8050–7.

  12. Cattani F, Barth VC Jr, Nasário JSR, Ferreira CAS, Oliveira SD. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. J Dairy Sci. 2016;99(4):2617–24.

  13. Kim K, Seo J, Wheeler K, Park C, Kim D, Park S, Kim W, Chung SI, Leighton T. Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. FEMS Immunol Med Microbiol. 2005;43(2):301–10.

  14. Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC. Development of a PCR assay for identification of the Bacillus cereus group species. J Appl Microbiol. 2010;108(1):266–73.

  15. Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø A-B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl Environ Microbiol. 2000;66(6):2627–30.

  16. Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett. 2020;30(9):127064.

    Article  CAS  Google Scholar 

  17. Patel R, Sarma S, Shukla A, Parmar P, Goswami D, Saraf M. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep. 2020;47(10):8113–31.

    Article  CAS  Google Scholar 

  18. Vilaivan T. Pyrrolidinyl PNA with α/β-dipeptide backbone: from development to applications. Acc Chem Res. 2015;48(6):1645–56.

    Article  CAS  Google Scholar 

  19. Laopa PS, Vilaivan T, Hoven VP. Positively charged polymer brush-functionalized filter paper for DNA sequence determination following dot blot hybridization employing a pyrrolidinyl peptide nucleic acid probe. Analyst. 2013;138(1):269–77.

    Article  CAS  Google Scholar 

  20. Maneelun N, Vilaivan T. Dual pyrene-labeled pyrrolidinyl peptide nucleic acid as an excimer-to-monomer switching probe for DNA sequence detection. Tetrahedron. 2013;69(51):10805–10.

    Article  CAS  Google Scholar 

  21. Boonlua C, Ditmangklo B, Reenabthue N, Suparpprom C, Poomsuk N, Siriwong K, Vilaivan T. Pyrene-labeled pyrrolidinyl peptide nucleic acid as a hybridization-responsive DNA probe: comparison between internal and terminal labeling. RSC Adv. 2014;4(17):8817–27.

    Article  CAS  Google Scholar 

  22. Jirakittiwut N, Panyain N, Nuanyai T, Vilaivan T, Praneenararat T. Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor. RSC Adv. 2015;5(31):24110–4.

    Article  CAS  Google Scholar 

  23. Yotapan N, Nim-anussornkul D, Vilaivan T. Pyrrolidinyl peptide nucleic acid terminally labeled with fluorophore and end-stacking quencher as a probe for highly specific DNA sequence discrimination. Tetrahedron. 2016;72(49):7992–9.

    Article  CAS  Google Scholar 

  24. Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Vilaivan T, Thavarungkul P. Pyrrolidinyl PNA polypyrrole/silver nanofoam electrode as a novel label-free electrochemical miRNA-21 biosensor. Biosens. Bioelectron. 2018;102:217–25.

    Article  CAS  Google Scholar 

  25. Cecchini F, Iacumin L, Fontanot M, Comuzzo P, Comi G, Manzano M. Dot blot and PCR for Brettanomyces bruxellensis detection in red wine. Food Control. 2013;34(1):40–6.

  26. Trinh TND, Lee NY. A foldable isothermal amplification microdevice for fuchsin-based colorimetric detection of multiple foodborne pathogens. Lab Chip. 2019;19(8):1397–405.

    Article  CAS  Google Scholar 

  27. Nguyen QH, Kim MI. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. TrAC, Trends Anal. Chem. 2020;132:116038.

    Article  CAS  Google Scholar 

  28. Na M, Zhang S, Liu J, Ma S, Han Y, Wang Y, He Y, Chen H, Chen X. Determination of pathogenic bacteria―Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. J. Hazard. Mater. 2020;386:121956.

  29. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal Chem. 2012;84(6):2900–7.

    Article  CAS  Google Scholar 

  30. Saengsawang N, Ruang-areerate T, Kesakomol P, Thita T, Mungthin M, Dungchai W. Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine. Analyst. 2020;145(24):8077–86.

  31. Sharafeldin M, Davis JJ. Point of care sensors for infectious pathogens. Anal Chem. 2021;93(1):184–97.

    Article  CAS  Google Scholar 

  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33(7):1870–4.

    Article  CAS  Google Scholar 

  33. Vilaivan T, Srisuwannaket C. Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding. Org Lett. 2006;8(9):1897–900.

    Article  CAS  Google Scholar 

  34. Jirakittiwut N, Munkongdee T, Wongravee K, Sripichai O, Fucharoen S, Praneenararat T, Vilaivan T. Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation. Microchim Acta. 2020;187(4):238.

    Article  CAS  Google Scholar 

  35. Winichagoon P, Saechan V, Sripanich R, Nopparatana C, Kanokpongsakdi S, Maggio A, Fucharoen S. Prenatal diagnosis of beta-thalassaemia by reverse dot-blot hybridization. Prenat Diagn. 1999;19(5):428–35.

    Article  CAS  Google Scholar 

  36. Orelma H, Teerinen T, Johansson L-S, Holappa S, Laine J. CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules. 2012;13(4):1051–8.

    Article  CAS  Google Scholar 

  37. Public Health England. Ready-to-eat foods: microbiological safety assessment guidelines. (2009). https://www.gov.uk/government/publications/ready-to-eat-foods-microbiological-safety-assessment-guidelines. Accessed 16 Aug 2021.

  38. Food Standards Australia New Zealand. Compendium of microbiological criteria for food (2018). https://www.foodstandards.gov.au/publications/pages/compendium-of-microbiological-criteria-for-food.aspx. Accessed 16 Aug 2021.

  39. Zhao Y, Chen F, Li Q, Wang L, Fan C. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–545.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Thailand Science Research and Innovation (TSRI) (formerly the Thailand Research Fund, TRF) grant no. RGU6180001 (to TV) and MRG6280238 (to TP). NJ thanks the Science Achievement Scholarship of Thailand for his Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanit Praneenararat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirakittiwut, N., Patipong, T., Cheiwchanchamnangij, T. et al. Paper-based sensor from pyrrolidinyl peptide nucleic acid for the efficient detection of Bacillus cereus. Anal Bioanal Chem 413, 6661–6669 (2021). https://doi.org/10.1007/s00216-021-03633-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03633-9

Keywords

Navigation