Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between the urinary sodium-to-potassium ratio and renal outcomes in patients with chronic kidney disease: a prospective cohort study

Abstract

A higher urinary sodium-to-potassium (UNa/K) ratio has been reported to be associated with high blood pressure and subsequent cardiovascular events. However, the association between the UNa/K ratio and renal outcomes remains uncertain. We prospectively investigated the association between the UNa/K ratio and renal outcomes in patients with chronic kidney disease (CKD). We enrolled 716 patients with CKD, and 24-h urinary sodium and potassium excretion were measured. Patients were divided into UNa/K ratio tertiles (T1–T3). Endpoints were defined as a composite of doubling of serum creatinine (SCr), end-stage kidney disease (ESKD), or death and a composite of doubling of SCr or ESKD (added as an alternative outcome). We investigated the association between the UNa/K ratio and renal outcomes using a Cox proportional hazards model. During a median follow-up of 2.3 years, doubling of SCr, ESKD, or death and doubling of SCr or ESKD occurred in 332 and 293 patients, respectively. After adjustment for covariates including potentially confounding variables such as plasma renin activity, plasma aldosterone concentration, and B-type natriuretic peptide, the hazard ratios (HRs) (95% confidence intervals [CIs]) for the composite of doubling of SCr, ESKD, or death for T2 and T3 were 1.44 (1.06–1.96) and 1.59 (1.14–2.21), respectively, compared with T1. Additionally, compared with T1, the highest tertile (T3) of the UNa/K ratio was associated with a composite of doubling of SCr or ESKD (HR 1.55, 95% CI 1.09–2.20). A higher UNa/K ratio was independently associated with poor renal outcomes in patients with CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88:987–95.

    Article  CAS  PubMed  Google Scholar 

  2. Iwahori T, Miura K, Ueshima H, Tanaka-Mizuno S, Chan Q, Arima H, et al. Urinary sodium-to-potassium ratio and intake of sodium and potassium among men and women from multiethnic general populations: the INTERSALT Study. Hypertens Res. 2019;42:1590–98.

    Article  CAS  PubMed  Google Scholar 

  3. The Ministry of Health, Labour, and Welfare. The results of the 2019 National Health and Nutrition Survey in Japan. Accessed on 21 Feb 2021. https://www.mhlw.go.jp/content/10900000/000687163.pdf.

  4. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24h urinary sodium and potassium excretion. BMJ. 1988;297:319–28.

    Article  Google Scholar 

  5. Perez V, Chang ET. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;5:712–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedayati SS, Minhajuddin AT, Ijaz A, Moe OW, Elsayed EF, Reilly RF, et al. Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences. Clin J Am Soc Nephrol. 2012;7:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Averill MM, Young RL, Wood AC, Kurlak EO, Kramer H, Steffen L, et al. Spot urine sodium-to-potassium ratio is a predictor of stroke. Stroke. 2019;50:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cook NR, Obarzanek E, Cutler JA, Buring JE, Rexrode KM, Kumanyika SK, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch Intern Med. 2009;169:32–40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hattori H, Hirata A, Kubo S, Nishida Y, Nozawa M, Kawamura K, et al. Estimated 24 h urinary sodium-to-potassium ratio is related to renal function decline: A 6-year cohort study of Japanese urban residents. Int J Environ Res Public Health. 2020;17:5811.

    Article  CAS  PubMed Central  Google Scholar 

  10. Deriaz D, Guessous I, Vollenweider P, Devuyst O, Burnier M, Bochud M, et al. Estimated 24-h urinary sodium and sodium-to-potassium ratio are predictors of kidney function decline in a population-based study. J Hypertens. 2019;37:1853–60.

    Article  CAS  PubMed  Google Scholar 

  11. Tabara Y, Takahashi Y, Setoh K, Kawaguchi T, Kosugi S, Nakayama T, et al. Prognostic significance of spot urine Na/K for longitudinal changes in blood pressure and renal function: The Nagahama Study. Am J Hypertens. 2017;30:899–906.

    Article  CAS  PubMed  Google Scholar 

  12. Koo H, Hwang S, Kim TH, Kang SW, Oh KH, Ahn C, et al. The ratio of urinary sodium and potassium and chronic kidney disease progression: results from the KoreaN Cohort Study for Outcomes in Patients with Chronic Kidney Disease (KNOW-CKD). Medicine. 2018;97:e12820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2020;12:CD004022.

    PubMed  Google Scholar 

  14. Shimosawa T. Salt, the renin-angiotensin-aldosterone system and resistant hypertension. Hypertens Res. 2013;36:657–60.

    Article  CAS  PubMed  Google Scholar 

  15. McDonough AA, Veiras LC, Guevara CA, Ralph DL. Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab. 2017;312:E348–E56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020;97:42–61.

    Article  CAS  PubMed  Google Scholar 

  17. Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJ, et al. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2014;64:769–76.

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto R, Ali Y, Hashizume R, Suzuki N, Ito M. BNP as a major player in the heart-kidney connection. Int J Mol Sci. 2019;20:3581.

    Article  CAS  PubMed Central  Google Scholar 

  19. Yoshitomi R, Nakayama M, Sakoh T, Fukui A, Shikuwa Y, Tominaga M, et al. Plasma B-type natriuretic peptide concentration is independently associated with kidney function decline in Japanese patients with chronic kidney disease. J Hypertens. 2016;34:753–61.

    Article  CAS  PubMed  Google Scholar 

  20. Terata S, Kikuya M, Satoh M, Ohkubo T, Hashimoto T, Hara A, et al. Plasma renin activity and the aldosterone-to-renin ratio are associated with the development of chronic kidney disease: the Ohasama Study. J Hypertens. 2012;30:1632–8.

    Article  CAS  PubMed  Google Scholar 

  21. Castañeda-Bueno M, Arroyo JP, Gamba G. Independent regulation of Na+ and K+ balance by the kidney. Med Princ Pract. 2012;21:101–14.

    Article  PubMed  Google Scholar 

  22. Ku E, McCulloch CE, Vittinghoff E, Lin F, Johansen KL. Use of antihypertensive agents and association with risk of adverse outcomes in chronic kidney disease: focus on angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. J Am Heart Assoc. 2018;7:e009992.

    Article  PubMed  PubMed Central  Google Scholar 

  23. He J, Mills KT, Appel LJ, Yang W, Chen J, Lee BT, et al. Urinary sodium and potassium excretion and CKD progression. J Am Soc Nephrol. 2016;27:1202–12.

    Article  CAS  PubMed  Google Scholar 

  24. Japanese Society of Nephrology. Evidence-based practice guideline for the treatment of CKD. Nihon Jinzo Gakkai Shi. 2018;60:1037–193.

    Google Scholar 

  25. Japanese Society of Nephrology: Clinical practice guidebook for diagnosis and treatment of chronic kidney disease. Chapter 17. Modification of lifestyle and diet. Clin Exp Nephrol. 2009;13:228–30.

  26. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  27. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl J Med. 2014;371:612–23.

    Article  PubMed  CAS  Google Scholar 

  28. Mente A, O’Donnell M, Rangarajan S, McQueen M, Dagenais G, Wielgosz A,x et al. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. Lancet. 2018;392:496–506.

    Article  PubMed  Google Scholar 

  29. Fan L, Tighiouart H, Levey AS, Beck GJ, Sarnak MJ. Urinary sodium excretion and kidney failure in nondiabetic chronic kidney disease. Kidney Int. 2014;86:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smyth A, Dunkler D, Gao P, Teo KK, Yusuf S, O’Donnell MJ, et al. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014;86:1205–12.

    Article  CAS  PubMed  Google Scholar 

  31. Kieneker LM, Bakker SJ, de Boer RA, Navis GJ, Gansevoort RT, Joosten MM. Low potassium excretion but not high sodium excretion is associated with increased risk of developing chronic kidney disease. Kidney Int. 2016;90:888–96.

    Article  CAS  PubMed  Google Scholar 

  32. Araki S, Haneda M, Koya D, Kondo K, Tanaka S, Arima H, et al. Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol. 2015;10:2152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim HW, Park JT, Yoo TH, Lee J, Chung W, Lee KB, et al. Urinary potassium excretion and progression of CKD. Clin J Am Soc Nephrol. 2019;14:330–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leonberg-Yoo AK, Tighiouart H, Levey AS, Beck GJ, Sarnak MJ. Urine potassium excretion, kidney failure, and mortality in CKD. Am J Kidney Dis. 2017;69:341–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fox CS, Larson MG, Hwang SJ, Leip EP, Rifai N, Levy D, et al. Cross-sectional relations of serum aldosterone and urine sodium excretion to urinary albumin excretion in a community-based sample. Kidney Int. 2006;69:2064–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fukui A, Nakayama M, Tanaka S, Matsukuma Y, Yoshitomi R, Nakano T, et al. Association between urinary salt excretion and albuminuria in Japanese patients with chronic kidney disease: the Fukuoka kidney disease registry study. Clin Exp Nephrol. 2021;25:9–18.

    Article  CAS  PubMed  Google Scholar 

  37. Roscioni SS, Lambers Heerspink HJ, de Zeeuw D. Microalbuminuria: target for renoprotective therapy PRO. Kidney Int. 2014;86:40–9.

    Article  CAS  PubMed  Google Scholar 

  38. Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K, Okumura K. Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation. 2000;101:856–61.

    Article  CAS  PubMed  Google Scholar 

  39. He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, et al. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension. 2010;55:681–8.

    Article  CAS  PubMed  Google Scholar 

  40. Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N. Engl J Med. 2007;356:1966–78.

    Article  PubMed  Google Scholar 

  41. Adrogué HJ, Madias NE. Shared primacy of sodium and potassium on cardiovascular risk. Am J Kidney Dis. 2009;54:598–601.

    Article  PubMed  Google Scholar 

  42. Bagrov AY, Shapiro JI. Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nat Clin Pr Nephrol. 2008;4:378–92.

    Article  CAS  Google Scholar 

  43. Fujita T, Ito Y. Salt loads attenuate potassium-induced vasodilation of forearm vasculature in humans. Hypertension. 1993;21:772–8.

    Article  CAS  PubMed  Google Scholar 

  44. Okuyama Y, Uchida HA, Iwahori T, Segawa H, Kato A, Takeuchi H, et al. The relationship between repeated measurement of casual and 24-h urinary sodium-to-potassium ratio in patients with chronic kidney disease. J Hum Hypertens. 2019;33:286–97.

    Article  CAS  PubMed  Google Scholar 

  45. World Health Organization. WHO Guideline: sodium intake for adults and children. Geneva: World Health Organization, 2012. Accessed 20 Feb 2021. http://www.who.int/nutrition/publications/guidelines/sodium_intake/en/.

  46. World Health Organization. Guideline: Potassium Intake for Adults and Children. Geneva: World Health Organization, 2012. Accessed 20 Feb 2021. https://www.who.int/nutrition/publications/guidelines/potassium_intake/en/.

  47. Iwahori T, Miura K, Ueshima H. Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients. 2017;9:700.

    Article  PubMed Central  Google Scholar 

  48. Mathialahan T, Maclennan KA, Sandle LN, Verbeke C, Sandle GI. Enhanced large intestinal potassium permeability in end-stage renal disease. J Pathol. 2005;206:46–51.

    Article  CAS  PubMed  Google Scholar 

  49. Ueda Y, Ookawara S, Ito K, Miyazawa H, Kaku Y, Hoshino T, et al. Changes in urinary potassium excretion in patients with chronic kidney disease. Kidney Res Clin Pract. 2016;35:78–83.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Weir MR, Rolfe M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin J Am Soc Nephrol. 2010;5:531–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the 716 participants of the study. We thank Richard Robins, PhD, from Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Nakayama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukuma, Y., Nakayama, M., Tsuda, S. et al. Association between the urinary sodium-to-potassium ratio and renal outcomes in patients with chronic kidney disease: a prospective cohort study. Hypertens Res 44, 1492–1504 (2021). https://doi.org/10.1038/s41440-021-00741-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00741-y

Keywords

This article is cited by

Search

Quick links