Skip to main content
Log in

Insight into the effect of support crystal form on semi-continuous oxidation of glycerol

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, two Pt catalysts using anatase and rutile as supports were prepared, and then the support effect on catalytic performance in glycerol oxidation was investigated. Different Pt/TiO2 catalysts exhibited not so negligible distinction on the product distribution. On one side, the C=O bonds of intermediate glyceraldehyde (GLYAD) highly dissociated in the form of bidentate species through C atom bonding to O atom and O atom bonding to Ti atom of rutile support, which largely promoted the transformation from GLYAD to glyceric acid (GLYA). While, in the case of anatase support, the adsorption form of C=O was monodentate. On another side, the formed GLYA was weakly adsorbed through two O atoms bridging/bonding to two Ti atoms. Due to the longer Ti–Ti distance in anatase, C–C cleavage of GLYA was obviously inhibited. The rutile support with shorter Ti–Ti distance inevitably led to obvious C–C cleavage. The discovery of the support effect could offer an alternative method to controllably regulate product distribution and offers specific perspective on designing efficient catalysts in semicontinuous oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2.

Similar content being viewed by others

References

  1. G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308, 1446–1450 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gartner, J.A. Dumesic, Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322, 417–421 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. M. He, Y. Sun, B. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013)

    Article  CAS  Google Scholar 

  5. S. Crossley, J. Faria, M. Shen, D.E. Resasco, Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327, 68–72 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. P. Dhepe, K. Tomishige, K.C.-W. Wu, Catalytic conversion of biomass. ChemCatChem 9, 2613–2614 (2017)

    Article  CAS  Google Scholar 

  7. J.C.S. Ruiz, R. Luque, A.S. Lveda-Escribano, Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40, 5266–5281 (2011)

    Article  Google Scholar 

  8. K.A.K. Tekin, S. Karagoz, A.J. Ragauskas, Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. SUT J. Math. 4, 4390–4414 (2020)

    Google Scholar 

  9. D. Sun, Y. Yamada, S. Sato, W. Ueda, Glycerol hydrogenolysis into useful C3 chemicals. Appl. Catal. B Environ. 193, 75–92 (2016)

    Article  CAS  Google Scholar 

  10. G. Dodekatos, S. Schünemann, H. Tüysüz, Recent advances in thermo- photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018)

    Article  CAS  Google Scholar 

  11. C. Xu, Y. Du, C. Li, J. Yang, G. Yang, Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au-Pt bimetallic catalysts. Appl. Catal. B 164, 334–343 (2015)

    Article  CAS  Google Scholar 

  12. H. Yan, S. Yao, W. Liang, X. Feng, X. Jin, Y. Liu, X. Chen, C. Yang, Selective oxidation of glycerol to carboxylic acids on Pt (111) in base-free medium: a periodic density functional theory investigation. Appl. Surf. Sci. 497, 143661 (2019)

    Article  CAS  Google Scholar 

  13. X. Jin, M. Zhao, C. Zeng, W. Yan, Z. Song, P.S. Thapa, B. Subramaniam, R.V. Chaudhari, Oxidation of glycerol to dicarboxylic acids using cobalt catalysts. ACS Catal. 6, 4576–4583 (2016)

    Article  CAS  Google Scholar 

  14. X. Han, H. Sheng, C. Yu, T.W. Walker, G.W. Huber, J. Qiu, S. Jin, Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 10, 6741–6752 (2020)

    Article  CAS  Google Scholar 

  15. P. Fordham, M. Besson, P. Gallezot, Selective oxidation with air of glyceric to hydroxypyruvic acid and tartronic to mesoxalic acid on PtBi/C catalysts. Heterogeneous Catal. Fine Chem. 108, 429–436 (1997)

    CAS  Google Scholar 

  16. Z. Chen, C. Liu, X. Zhao, H. Yan, J. Li, P. Lyu, Y. Du, S. Xi, K. Chi, X. Chi, H. Xu, X. Li, W. Fu, K. Leng, S.J. Pennycook, S. Wang, K.P. Loh, Promoted glycerol oxidation reaction in an interface confined hierarchically structured catalyst. Adv. Mater. 31, 1804763–1804771 (2019)

    Article  Google Scholar 

  17. A. Villa, N. Dimitratos, C.E. Chan-Thaw, C. Hammond, L. Prati, G.J. Hutchings, Glycerol oxidation using gold-containing catalysts. Acc. Chem. Res. 48, 1403–1412 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. J. Zhou, J. Hu, X. Zhang, J. Li, K. Jiang, Y. Liu, G. Zhao, X. Wang, H. Chu, Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction. J. Catal. 381, 434–442 (2020)

    Article  CAS  Google Scholar 

  19. Ju. Zhang, X. Li, M. Xu, Y. Yang, Y. Li, N. Liu, X. Meng, L. Chen, S. Shi, M. Wei, Glycerol aerobic oxidation to glyceric acid over Pt/hydrotalcite catalysts at room temperature. Sci. Bull. 64, 1764–1772 (2019)

    Article  CAS  Google Scholar 

  20. S. Carrettin, P. McMorn, P. Johnston, K. Griffinb, G.J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 7, 696–697 (2002)

    Article  Google Scholar 

  21. G.L. Brett, Q. He, C. Hammond, P.J. Miedziak, N. Dimitratos, M. Sankar, A.A. Herzing, M. Conte, J.A. Lopez-Sanchez, C.J. Kiely, D.W. Knight, S.H. Taylor, G.J. Hutchings, Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angew. Chem. Int. Ed. 123, 10318–10321 (2011)

    Article  Google Scholar 

  22. R.A.V. Santen, Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009)

    Article  PubMed  Google Scholar 

  23. X. Zhang, D. Zhou, X. Wang, J. Zhou, J. Li, M. Zhang, Y. Shen, H. Chu, Y. Qu, Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation. ACS Catal. 10, 3832–3837 (2020)

    Article  CAS  Google Scholar 

  24. J. Lei, X. Duan, G. Qian, X. Zhou, D. Chen, Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition. Ind. Eng. Chem. Res. 53, 16309–16315 (2014)

    Article  CAS  Google Scholar 

  25. C.L. Xu, Y.Q. Du, C. Li, J. Yang, G. Yang, Insight into effect of acid/base nature of supports on selectivity of glycerol oxidation over supported Au−Pt bimetallic catalysts. Appl. Catal. B 164, 334–343 (2015)

    Article  CAS  Google Scholar 

  26. A. Villa, S. Campisi, K.M.H. Mohammed, N. Dimitratos, F. Vindigni, M. Manzoli, W. Jones, M. Bowker, G.J. Hutchings, L. Prati, Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts. Catal. Sci. Technol. 5, 1126–1132 (2015)

    Article  CAS  Google Scholar 

  27. W. Yan, B. Chen, S.M. Mahurin, V. Schwartz, D.R. Mullins, A.R. Lupini, S.J. Pennycook, S. Dai, S.H. Overbury, Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. J. Phys. Chem. B 109, 10676–10685 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Rui, S. Wu, C. Peng, H. Ji, Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chem. Eng. J. 243, 254–264 (2014)

    Article  CAS  Google Scholar 

  29. J. Lin, T. Sun, M. Li, J. Yang, J. Shen, Z. Zhang, Y. Wang, X. Zhang, X. Wang, More efficiently enhancing photocatalytic activity by embedding Pt within anatase–rutile TiO2 heterophase junction than exposing Pt on the outside surface. J. Catal. 372, 8–18 (2019)

    Article  CAS  Google Scholar 

  30. Q. Xu, Y. Ma, J. Zhang, X. Wang, Z. Feng, C. Li, Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. J. Catal. 278, 329–335 (2011)

    Article  CAS  Google Scholar 

  31. G. Zhou, R. Dou, H. Bi, S. Xie, Y. Pei, K. Fan, M. Qiao, B. Sun, B. Zong, Ru nanoparticles on rutile/anatase junction of P25 TiO2: Controlled deposition and synergy in partial hydrogenation of benzene to cyclohexene. J. Catal. 332, 119–126 (2015)

    Article  CAS  Google Scholar 

  32. Y. Pan, G. Wu, Y. He, J. Feng, D. Li, Identification of the Au/ZnO interface as the specific active site for the selective oxidation of the secondary alcohol group in glycerol. J. Catal. 369, 222–232 (2019)

    Article  CAS  Google Scholar 

  33. J. Liu, Y. Nan, X. Huang, J.Q. Bond, L.L. Tavlarides, Continuous esterification of oleic acid to ethyl oleate under sub/supercritical conditions over γ-Al2O3. Appl. Catal. B 232, 155–163 (2018)

    Article  CAS  Google Scholar 

  34. A. Litkea, H. Freib, E.J.M. Hensena, J.P. Hofmann, Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. J. Photochem. Photo. A 370, 84–88 (2019)

    Article  Google Scholar 

  35. N. Liu, M. Xu, Y. Yang, S. Zhang, J. Zhang, W. Wang, L. Zheng, S. Hong, M. Wei, Auδ−−Ov−Ti3+ interfacial site: catalytic active center toward low temperature water gas shift reaction. ACS Catal. 9, 2707–2717 (2019)

    Article  CAS  Google Scholar 

  36. D.W. Kwon, P.W. Seo, G. Kim, S.C. Hong, Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: the effect of relative humidity on catalytic activity. Appl. Catal. B 163, 436–443 (2015)

    Article  CAS  Google Scholar 

  37. T. Xia, N. Li, Y. Zhang, M. Kruger, J. Murowchick, A. Selloni, X. Chen, Directional heat dissipation across the interface in Anatase–Rutile nanocomposites. ACS Appl. Mater. Interfaces 5, 9883–9890 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhang, Y. Li, Y. Wang, H. He, Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ. Sci. Technol. 48, 5816–5822 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. J. Li, S. Cai, E. Yu, B. Weng, X. Chen, J. Chen, H. Jia, Y. Xu, Efficient infrared light promoted degradation of volatile organic compounds over photo-thermal responsive Pt-rGO-TiO2 composites. Appl. Catal. B 233, 260–271 (2018)

    Article  CAS  Google Scholar 

  40. L. Kang, X. Liu, A. Wang, L. Li, Y. Ren, X. Li, X. Pan, Y. Li, X. Zong, H. Liu, A.I. Frenkel, T. Zhang, Photo-thermo catalytic oxidation over TiO2-WO3 supported platinum catalyst. Angew. Chem. Int. Ed. 59, 12909–12916 (2020)

    Article  CAS  Google Scholar 

  41. X. Li, W. Li, Y. Chen, H. Wang, Enhancement of hydrogen spillover by surface labile oxygen species on oxidized Pt/TiO2 catalyst. Catal. Lett. 32, 31–42 (1995)

    Article  CAS  Google Scholar 

  42. C. Qiu, J. Lin, J. Shen, D. Liu, Z. Zhang, H. Lin, X. Wang, Regulation of the rutile/anatase TiO2 heterophase interface by Ni 12 P 5 to improve photocatalytic hydrogen evolution. Catal. Sci. Technol. 10, 3709–3719 (2020)

    Article  CAS  Google Scholar 

  43. J.A. Toledo-Antonio, S. Capula, M.A. Cortes-Jacome, C. Angeles-Chavez, E. Lopez-Salinas, G. Ferrat, J. Navarrete, J. Escobar, Low-temperature FTIR study of CO adsorption on titania nanotubes. J. Phys. Chem. C 111, 10799–10805 (2007)

    Article  CAS  Google Scholar 

  44. J. Raskó, T. Kecskés, J. Kiss, Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry. J. Catal. 226, 183–191 (2004)

    Article  Google Scholar 

  45. J. Raskó, T. Kecskés, J. Kiss, Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2. J. Catal. 224, 261–268 (2004)

    Article  Google Scholar 

  46. J.R. Copeland, I.A. Santillan, S.M. Schimming, J.L. Ewbank, C. Sievers, Surface interactions of glycerol with acidic and basic metal oxides. J. Phys. Chem. C. 117, 21413–21425 (2013)

    Article  CAS  Google Scholar 

  47. J.F. Gomes, A.C. Garcia, L.H.S. Gasparotto, N.E. Souza, E.B. Ferreira, C. Pires, G. Tremiliosi-Filho, Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study. Electr. Acta 144, 361–368 (2014)

    Article  CAS  Google Scholar 

  48. D. Shen, S. Yao, S. Wu, Q. Liu, R. Xiao, Kinetic study on the thermo-oxidative degradation of glyceraldehyde under different oxygen concentrations. J. Anal. Appl. Pyrol. 113, 665–671 (2015)

    Article  CAS  Google Scholar 

  49. A. Zalineeva, S. Baranton, C. Coutanceau, How do Bi-modified palladium nanoparticles work towards glycerol electrooxidation? An in situ FTIR study. Electro. A. 176, 705–717 (2015)

    Article  CAS  Google Scholar 

  50. K.L. Miller, C.W. Lee, J.L. Falconer, J.W. Medlin, Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. J. Catal. 275, 294–299 (2010)

    Article  CAS  Google Scholar 

  51. A. Mattsson, L.O. Sterlund, Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J. Phys. Chem. C 114, 14121–14132 (2010)

    Article  CAS  Google Scholar 

  52. L. Österlund, Structure-reactivity relationships of anatase and rutile TiO2 nanocrystals measured by in situ vibrational spectroscopy. Solid State Phenom. 162, 203–219 (2010)

    Article  Google Scholar 

  53. T. Meulen, A. Mattson, L. Österlund, A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2 nanoparticles: role of surface intermediates. J. Catal. 251, 131–144 (2007)

    Article  Google Scholar 

  54. G. Capecchi, M. Faga, G. Martra, S. Coluccia, M.F. Iozzi, M. Cossi, Adsorption of CH3COOH on TiO2: IR and theoretical investigations. Res. Chem. Int. 33, 269–284 (2007)

    Article  CAS  Google Scholar 

  55. X. Wu, The properties and applications of nano-structured titanium oxide materials. Key Eng. Mater. 727, 314–321 (2017)

    Article  Google Scholar 

  56. S. Kwon, T. Lin, E. Iglesia, Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 383, 60–76 (2020)

    Article  CAS  Google Scholar 

  57. D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Gold nanoparticles located at the interface of Anatase/Rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134, 6309–6315 (2012)

    Article  CAS  PubMed  Google Scholar 

  58. D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng, Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl. Catal. B 106, 423–432 (2011)

    Article  CAS  Google Scholar 

  59. Y. Sun, X. Li, J. Wang, W. Ning, J. Fu, X. Lv, Z. Hou, Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution. Appl. Catal. B 218, 538–544 (2017)

    Article  CAS  Google Scholar 

  60. P. Yang, J. Pan, Y. Liu, X. Zhang, J. Feng, S. Hong, D. Li, Insight into the role of unsaturated coordination O2c-Ti5c-O2c sites on selective glycerol oxidation over AuPt/TiO2 catalysts. ACS Catal. 9, 188–199 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation, National Key Research and Development Program of China (2017YFA0206804), and the Fundamental Research Funds for the Central Universities (XK1802-6, BHYC1701B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junting Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gao, M., Yang, P. et al. Insight into the effect of support crystal form on semi-continuous oxidation of glycerol. J Porous Mater 28, 1371–1385 (2021). https://doi.org/10.1007/s10934-021-01088-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01088-y

Keywords

Navigation