Skip to main content
Log in

Identification of active structure and catalytic efficiency of MCM-22 zeolite detemplated by two different processes

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This study attempts to identify the active structure and the catalytic efficiency of MCM-22 zeolite after the successful removal of pre-synthesized MCM-22(P) template by two different methods. The MCM-22(P) zeolite was firstly synthesized by hydrothermal process with a SiO2/Al2O3 ratio of 50, and its 2D layered hexamethyleneimine (HMI) precursor template was removed by (i) thermal calcination at high temperature (550 °C) to obtain the MCM-22(C), and (ii) oxidation with H2O2 treatment at low temperature (90 °C) to obtain the MCM-22(H2O2). The structural characteristics of MCM-22(C) and the MCM-22(H2O2) were identified by XRD, N2 absorption/desorption, FTIR, NH3-TPD and 27Al MAS-NMR. The catalytic performance of MCM-22(C) and MCM-22(H2O2) loaded by 20 wt% zinc nanoparticles were examined through a Friedel-Grafts (FC) alkylation of benzene with benzyl chloride in a liquid phase environment. It was found that Zn-MCM-22(H2O2) was more efficient in FC alkylation reaction in comparison with Zn-MCM-22(C) for the formation of intercrystal pores due to the inhibitory influence of silonal group condensation on the external surface of MCM-22 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.L. Lawton et al., Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous Mesoporous Mater. 23(1), 109–117 (1998)

    Article  CAS  Google Scholar 

  2. A. Ahmad et al., Synthesis, characterization and catalytic testing of MCM-22 derived catalysts for n-hexane cracking. Sci. Rep. 10(1), 21786 (2020)

    Article  CAS  Google Scholar 

  3. X. Ren, J. Liang, J. Wang, H-MCM-22 zeolitic catalysts modified by chemical liquid deposition for shape-selective disproportionation of toluene. J. Porous Mater. 13(3), 353–357 (2006)

    Article  CAS  Google Scholar 

  4. P. Sahu et al., Cerium ion-exchanged layered MCM-22: preparation, characterization and its application for esterification of fatty acids. J. Porous Mater. 25(4), 999–1005 (2018)

    Article  CAS  Google Scholar 

  5. Y. Shang et al., Modification of MCM-22 zeolites with silylation agents: acid properties and catalytic performance for the skeletal isomerization of n-butene. Catal. Commun. 9(5), 907–912 (2008)

    Article  CAS  Google Scholar 

  6. F.S.O. Ramos, M.K. de Pietre, H.O. Pastore, Lamellar zeolites: an oxymoron? RSC Adv. 3(7), 2084–2111 (2013)

    Article  CAS  Google Scholar 

  7. W.J. Roth, J. Čejka, Two-dimensional zeolites: dream or reality? Catal. Sci. Technol. 1(1), 43–53 (2011)

    Article  CAS  Google Scholar 

  8. U. Díaz, A. Corma, Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Trans. 43(27), 10292–10316 (2014)

    Article  Google Scholar 

  9. G.G. Juttu, R.F. Lobo, Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Microporous Mesoporous Mater. 40(1), 9–23 (2000)

    Article  CAS  Google Scholar 

  10. M. Müller, G. Harvey, R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR. Microporous Mesoporous Mater. 34(2), 135–147 (2000)

    Article  Google Scholar 

  11. V. Valtchev et al., Tailored crystalline microporous materials by post-synthesis modification. Chem. Soc. Rev. 42(1), 263–290 (2013)

    Article  CAS  Google Scholar 

  12. J. Patarin, Mild methods for removing organic templates from inorganic host materials. Angew. Chem. Int. Ed. 43(30), 3878–3880 (2004)

    Article  CAS  Google Scholar 

  13. L. Lang et al., Importance of hydrogen for low-temperature detemplation of high-silica MFI zeolite crystals. Microporous Mesoporous Mater. 235, 143–150 (2016)

    Article  CAS  Google Scholar 

  14. J. He et al., New methods to remove organic templates from porous materials. Mater. Chem. Phys. 77(1), 270–275 (2003)

    Article  CAS  Google Scholar 

  15. J. Kuhn et al., Detemplation of DDR type zeolites by ozonication. Microporous Mesoporous Mater. 120(1), 12–18 (2009)

    Article  CAS  Google Scholar 

  16. H. Xing et al., Detemplation with H2O2 and characterization of MCM-56. Catal. Commun. 9(2), 234–238 (2008)

    Article  CAS  Google Scholar 

  17. L. Xu et al., Synthesis, characterization and catalytic performance of a novel zeolite ITQ-2-like by treating MCM-22 precursor with H2O2. Bull. Mater. Sci. 34(7), 1605–1610 (2011)

    Article  CAS  Google Scholar 

  18. I. Melián-Cabrera, F. Kapteijn, J.A. Moulijn, One-pot catalyst preparation: combined detemplating and Fe ion-exchange of BEA through Fenton’s chemistry. Chem. Commun. 16, 2178–2180 (2005)

    Article  Google Scholar 

  19. S.V. Lande et al., Zinc-modified MCM-22 as potential solid acid catalyst for Friedel-Crafts alkylation reaction. Int. J. Chem. React. Eng. 11(1), 407–415 (2013)

    Article  Google Scholar 

  20. A. Corma, C. Corell, J. Pérez-Pariente, Synthesis and characterization of the MCM-22 zeolite. Zeolites 15(1), 2–8 (1995)

    Article  CAS  Google Scholar 

  21. A. Corma et al., Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22. Zeolites 15(7), 576–582 (1995)

    Article  CAS  Google Scholar 

  22. Q.-Q. Hao et al., The delaminating and pillaring of MCM-22 for Fischer-Tropsch synthesis over cobalt. Catal. Today 274, 109–115 (2016)

    Article  CAS  Google Scholar 

  23. M. Hu et al., Effect of template removal using plasma treatment on the structure and catalytic performance of MCM-22. RSC Adv. 8(28), 15372–15379 (2018)

    Article  CAS  Google Scholar 

  24. J.K. Reddy et al., Synthesis of Ce-MCM-22 and its enhanced catalytic performance for the removal of olefins from aromatic stream. J. Porous Mater. 27(6), 1649–1658 (2020)

    Article  CAS  Google Scholar 

  25. Y. Liu et al., Facile and fast template removal from mesoporous MCM-41 molecular sieve using dielectric-barrier discharge plasma. Catal. Commun. 11(6), 551–554 (2010)

    Article  CAS  Google Scholar 

  26. A. Al-Nayili, M. Albdiry, N. Salman, Dealumination of zeolite frameworks and Lewis acid catalyst activation for transfer hydrogenation. Arab. J. Sci. Eng. 46(6), 5709–5716 (2021)

    Article  CAS  Google Scholar 

  27. J. Kuhn et al., Detemplation of [B]MFI zeolite crystals by ozonication. Microporous Mesoporous Mater. 120(1), 35–38 (2009)

    Article  CAS  Google Scholar 

  28. C.S. Triantafillidis, A.G. Vlessidis, N.P. Evmiridis, Dealuminated H−Y zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H−Y zeolites. Ind. Eng. Chem. Res. 39(2), 307–319 (2000)

    Article  CAS  Google Scholar 

  29. A. Korzeniowska et al., The structure-catalytic activity relationship for the transient layered zeolite MCM-56 with MWW topology. Catal. Today 345, 116–124 (2020)

    Article  CAS  Google Scholar 

  30. A. Corma, V. Martı́nez-Soria, E. Schnoeveld, Alkylation of benzene with short-chain olefins over MCM-22 zeolite: catalytic behaviour and kinetic mechanism. J. Catal. 192(1), 163–173 (2000)

    Article  Google Scholar 

  31. E. Rahmani, M. Rahmani, Alkylation of benzene over Fe-based metal organic frameworks (MOFs) at low temperature condition. Microporous Mesoporous Mater. 249, 118–127 (2017)

    Article  CAS  Google Scholar 

  32. S.K. Saxena, N. Viswanadham, Aa.H. Al-Muhtaseb, Effect of zeolite pore morphology on solvent-less alkylation of benzene with 1-hexene. Mater. Today Chem. 4, 45–52 (2017)

    Article  Google Scholar 

  33. Q. Wang et al., Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol. Chin. J. Chem. Eng. 25(12), 1777–1783 (2017)

    Article  Google Scholar 

  34. X. Wang et al., N-methyl-2-pyrrolidone-induced conversion of USY into hollow Beta zeolite and its application in the alkylation of benzene with isobutylene. Microporous Mesoporous Mater. 294, 109944 (2020)

    Article  CAS  Google Scholar 

  35. S.F. Rastegar et al., Analysis of decisive structural parameters of zeolites for alkylation of benzene with ethylene. Appl. Catal. A 591, 117379 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Al-Nayili or Mushtaq Albdiry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nayili, A., Albdiry, M. Identification of active structure and catalytic efficiency of MCM-22 zeolite detemplated by two different processes. J Porous Mater 28, 1439–1448 (2021). https://doi.org/10.1007/s10934-021-01098-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01098-w

Keywords

Navigation