Skip to main content
Log in

Preparation of zeolite-cellulose composites for water disinfection

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The drinking water shortage is globe concern currently, thus, developing an economical, green, antibacterial composites is urgent. Here, we report a simple and scalable strategy to synthesize zeolite-cellulose composites by the filter paper immersed in the precursor solution of synthetic zeolite. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence spectrophotometer (XRF), infrared spectra (IR), and thermogravimetry analyzer (TGA). It was confirmed that the sub-micron zeolite was successfully embedded into cellulose. Zn2+ and Cu2+ are induced into the composites by ion exchange, the composites were able to able to kill nearly all viable bacteria of 1 L of the natural water sample via gravity driving, demonstrating high suitability for practical water disinfection. Furthermore, after the dynamic test of deionized water, the contents of Zn2+ and Cu2+ ions exuded are far below the standard of drinking water, indicating that the materials are safe and have a long-term antibacterial property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Joseph, Cotruvo, 2017 WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition. J AWWA 109(7), 44–51 (2017). https://doi.org/10.5942/jawwa.2017.109.0087

  2. C.K. Pooi, H.Y. Ng, Review of low-cost point-of-use water treatment systems for developing communities. Npj Clean Water 1, 11–18 (2018). https://doi.org/10.1038/s41545-018-0011-0

    Article  Google Scholar 

  3. N. Phaswana-Mafuya, An investigation into the perceived sanitation challenges in the Eastern Cape rural communities:research. Health SA Gesondheid(Online) 11(1), 18–30 (2006). https://hdl.handle.net/10520/EJC34987

  4. J. Lin, A. Ganesh, Waterborne human pathogenic viruses of public health concern. Int. J. Environ. Heal R. 23(6), 544–564 (2013). https://doi.org/10.1080/09603123.2013.769205

    Article  Google Scholar 

  5. M. Dudziak, J. Wyczarska-Kokot, E. Laskawiec, A. Stolarczyk, Application of ultrafiltration in a swimming pool water treatment system. Membranes 9(3), 44–54 (2019). https://doi.org/10.3390/membranes9030044

    Article  CAS  PubMed Central  Google Scholar 

  6. D. Yu, X. Yu, C. Wang, X. Liu, Y. Xing, Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl. Mater. Inter. 4(5), 2781–2787 (2012). https://doi.org/10.1021/am3004363

    Article  CAS  Google Scholar 

  7. N. Keshavarzi, F. Mashayekhy Rad, A. Mace, F. Ansari, F. Akhtar, U. Nilsson, L. Berglund, L. Bergström, Nanocellulose-Zeolite composite films for odor elimination. ACS Appl. Mater. Inter. 7(26), 14254–14262 (2015). https://doi.org/10.1021/acsami.5b02252

    Article  CAS  Google Scholar 

  8. J.A. Sanchez-Marquez, R. Fuentes-Ramírez, I. Cano-Rodriguez, Z. Gamino-Arroyo, E. Rubio-Rosas, J.M. Kenny, N. Rescignano, Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int. J. Polym. Sci. 2015, 1–12 (2015). https://doi.org/10.1155/2015/320631

    Article  CAS  Google Scholar 

  9. G. Liu, J. Jiang, R. Yu, H. Yan, R. Liang, Silver nanoparticle-incorporated porous renewable film as low-cost bactericidal and antifouling filter for point-of-use water disinfection. Ind. Eng. Chem. Res. 59(23), 10857–10867 (2020). https://doi.org/10.1021/acs.iecr.0c00157

    Article  CAS  Google Scholar 

  10. A. Simon, J.A. McDonald, S.J. Khan, W.E. Price, L.D. Nghiem, Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals. J. Membrane Sci. 447, 153–162 (2013). https://doi.org/10.1016/j.memsci.2013.07.013

    Article  CAS  Google Scholar 

  11. Y. Zheng, U. Ash, R.P. Pandey, A.G. Ozioko, J. Ponce-Gonzalez, M. Handl, T. Weissbach, J.R. Varcoe, S. Holdcroft, M.W. Liberatore, R. Hiesgen, D.R. Dekel, Water uptake study of anion exchange membranes. Macromolecules 51(9), 3264–3278 (2018). https://doi.org/10.1021/acs.macromol.8b00034

    Article  CAS  Google Scholar 

  12. J. Garcia-Ivars, J. Dura-Maria, C. Moscardo-Carreno, C. Carbonell-Alcaina, M. Alcaina-Miranda, M. Iborra-Clar, Rejection of trace pharmaceutically active compounds present in municipal wastewaters using ceramic fine ultrafiltration membranes: effect of feed solution pH and fouling phenomena. Sep. Purif. Technol. 175, 58–71 (2017). https://doi.org/10.1016/j.seppur.2016.11.027

    Article  CAS  Google Scholar 

  13. T. Clasen, W. Schmidt, T. Rabie, I. Roberts, S. Cairncross, Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis. BMJ 334(7597), 782–785 (2007). https://doi.org/10.1136/bmj.39118.489931.BE

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Zhu, J. Hou, Y. Zhang, M. Tian, T. He, J. Liu, V. Chen, Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Membrane Sci 550, 173–197 (2018). https://doi.org/10.1016/j.memsci.2017.12.071

    Article  CAS  Google Scholar 

  15. S. Li, J. Huang, Cellulose-Rich Nanofiber-Based functional nanoarchitectures. Adv Mater 28(6), 1143–1158 (2016). https://doi.org/10.1002/adma.201501878

    Article  CAS  PubMed  Google Scholar 

  16. S. Chen, J. Popovich, N. Iannuzo, S.E. Haydel, D. Seo, Silver-Ion-exchanged nanostructured Zeolite X as antibacterial agent with superior ion release kinetics and efficacy against Methicillin-Resistant Staphylococcus aureus. ACS Appl. Mater. Inter. 9(45), 39271–39282 (2017). https://doi.org/10.1021/acsami.7b15001

    Article  CAS  Google Scholar 

  17. J. Cui, R. Yeasmin, Y. Shao, H. Zhang, H. Zhang, J. Zhu, Fabrication of Ag+, Cu2+, and Zn2+ ternary ion-exchanged Zeolite as an antimicrobial agent in powder coating. Ind. Eng. Chem. Res. 59(2), 751–762 (2019). https://doi.org/10.1021/acs.iecr.9b05338

    Article  CAS  Google Scholar 

  18. R.E. Hall, G. Bender, R.E. Marquis, Inhibitory and cidal antimicrobial actions of electrically generated silver ions. J. Oral. Maxil. Surg. 45(9), 779–784 (1987). https://doi.org/10.1016/0278-2391(87)90202-3

    Article  CAS  Google Scholar 

  19. E. Krol, M. Jeszka-Skowron, Z. Krejpcio, E. Flaczyk, R.W. Wojciak, The effects of supplementary mulberry leaf (Morus alba) extracts on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in diabetic rats. Biol. Trace. Elem. Res. 174(1), 158–165 (2016). https://doi.org/10.1007/s12011-016-0696-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Pasquet, Y. Chevalier, J. Pelletier, E. Couval, D. Bouvier, M. Bolzinger, The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloid Surf. A 457, 263–274 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.057

    Article  CAS  Google Scholar 

  21. V.B.P. Sudha, K.O. Singh, S.R. Prasad, P. Venkatasubramanian, Killing of enteric bacteria in drinking water by a copper device for use in the home: laboratory evidence. T. Roy Soc. Trop. Med. H. 103(8), 819–822 (2009). https://doi.org/10.1016/j.trstmh.2009.01.019

    Article  CAS  Google Scholar 

  22. C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, G. Tan, Y. Zhang, Y. Wang, C. Mao, Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: Implications for a new antibacterial mechanism. Chem. Res. Toxicol. 28(9), 1815–1822 (2015). https://doi.org/10.1021/acs.chemrestox.5b00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Sanaeepur, A. Kargari, B. Nasernejad, A. Ebadi Amooghin, M. Omidkhah, A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. J. Taiwan Inst. Chem. E 60, 403–413 (2016). https://doi.org/10.1016/j.jtice.2015.10.042

    Article  CAS  Google Scholar 

  24. F. Ji, C. Li, B. Tang, J. Xu, G. Lu, P. Liu, Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution. Chem. Eng. J. 209, 325–333 (2012). https://doi.org/10.1016/j.cej.2012.08.014

    Article  CAS  Google Scholar 

  25. K. Baghdad, A.M. Hasnaoui, Zeolite-cellulose composite membranes: synthesis and applications in metals and bacteria removal. J. Environ. Chem. Eng. 8(4), 104047–104070 (2020). https://doi.org/10.1016/j.jece.2020.104047

    Article  CAS  Google Scholar 

  26. L. Yu, X. Shang, H. Chen, L. Xiao, Y. Zhu, J. Fan, A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 10, 1932–1940 (2019). https://doi.org/10.1038/s41467-019-09849-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.K. Han, L. Ma, H.M. Zhao, X. Li, Y. Chun, J.H. Zhu, In situ synthesis of SBA-3/cotton fiber composite materials: a hybrid device for CO2 capture. Micropor. Mesopor. Mat. 151, 157–162 (2012). https://doi.org/10.1016/j.micromeso.2011.10.043

    Article  CAS  Google Scholar 

  28. N. Keshavarzi, F. Mashayekhy Rad, A. Mace, F. Ansari, F. Akhtar, U. Nilsson, L. Berglund, L. Bergström, Nanocellulose-zeolite composite coatings and films for odor elimination. ACS Appl. Mater. Inter. 7(26), 14254–14262 (2015). https://doi.org/10.1021/acsami.5b02252

    Article  CAS  Google Scholar 

  29. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44(22), 3358–3393 (2005). https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  30. B. Medronho, B. Lindman, Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interfac 222, 502–508 (2015). https://doi.org/10.1016/j.cis.2014.05.004

    Article  CAS  Google Scholar 

  31. I. Schmidt, C. Madsen, C.J.H. Jacobsen, Confined space synthesis. A novel route to nanosized zeolites. Inorg. Chem. 39(11), 2279–2283 (2000). https://doi.org/10.1021/ic991280q

    Article  CAS  PubMed  Google Scholar 

  32. I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C.J.H. Jacobsen, Carbon nanotube templated growth of mesoporous zeolite single crystals. Chem. Mater. 13(12), 4416–4418 (2001). https://doi.org/10.1021/cm011206h

    Article  CAS  Google Scholar 

  33. S. Chu, Y. Miao, Y. Qian, F. Ke, P. Chen, C. Jiang, X. Chen, Synthesis of uniform layer of TiO2 nanoparticles coated on natural cellulose micrometer-sized fibers through a facile one-step solvothermal method. Cellulose 26(8), 4757–4765 (2019). https://doi.org/10.1007/s10570-019-02425-w

    Article  CAS  Google Scholar 

  34. I.M. Gerzeliev, V.A. Ostroumova, M.N. Baskhanova, Enhancement of ion exchange in a FAU type zeolite during the synthesis of an active and selective catalyst for isobutane alkylation with Butylenes. Petrol Chem. 58(8), 676–680 (2018). https://doi.org/10.1134/S0965544118080066

    Article  CAS  Google Scholar 

  35. W. Maria, S. Aneela, S. Muhammad, I. Atif, J. Tahir, Preparation and characterization of composite membrane via layer by layer assembly for desalination. Appl. Surf. Sci. 396, 259–268 (2017). https://doi.org/10.1016/j.apsusc.2016.10.098

    Article  CAS  Google Scholar 

  36. S.B. Ma, Infrared spectrum test and analysis of regenerated cellulose fibers. Adv. Mat. Res. 671–674, 1954–1957 (2013).

    Article  Google Scholar 

  37. H. Dai, Y. Shen, T. Yang, C. Lee, D. Fu, A. Agarwal, T.T. Le, M. Tsapatsis, J.C. Palmer, B.M. Weckhuysen, P.J. Dauenhauer, X. Zou, J.D. Rimer, Finned zeolite catalysts. Nat. Mater. 19, 1074–1080 (2020). https://doi.org/10.1038/s41563-020-0753-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, G. & Xu, X. Preparation of zeolite-cellulose composites for water disinfection. J Porous Mater 28, 1459–1468 (2021). https://doi.org/10.1007/s10934-021-01096-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01096-y

Keywords

Navigation