Skip to main content
Log in

Excess Conductivity of High-Temperature Superconductors Polycrystalline \(Y_3Ba_5Cu_8O_{18\pm \delta }\) Doped with \(TiO_2\) Nanoparticles

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Syntheses of the \(Y_3Ba_5Cu_8O_{18\pm \delta }\) (noted Y-358) +x wt.% TiO2 (x = 0.00, 0.10, 0.30, 0.50 and 0.60 wt%) bulk superconducting material are prepared by the standard solid-state reaction process. Then, systematic electrical conductivity fluctuation in normal and superconducting state analyses on the samples is reported. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to systematically assess stage formation and microstructures of the samples. XRD with the Rietveld refinement procedure showed that by cumulating the amount of TiO2 nanoparticle into Y358 substance, the crystal lattice constants altered slightly and the orthorhombicity reduced compared to the pure sample. The impact of TiO2 adding upon the superconducting characteristics with critical temperatures Tc analysis showed that as the inclusion of TiO2 nanoparticles content increases the critical temperatures are enhanced for all of the doped samples. Evaluations of excess conductivity fluctuation were conducted by Aslamazov–Larkin (AL) model. Inside the grains, dimensional fluctuation is depending on the Lawrence–Doniach (LD) temperature named \(T_{LD}\). This parameter (\(T_{LD}\)) was increased in the mean-field area by rising TiO2 in Y358 substance compared to the non-added sample. However, analysing the excess conductivity based on the AL concept leads to the determination of thermodynamic fluctuation and some parameters values such as the critical temperature \((T_{c\ zero})\), coherence length \(\xi _c(0)\), super-layer length d, critical magnetic fields \(B_{c1}(0)\), \(B_{c2}(0)\) and critical current density \(J_c(0)\). These parameters which are significant by the TiO2 nanoscale doping show that the theory outlined in the chapter “Excess conductivity model” is sufficient to describe our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Zeitschrift für Physik B Condens Matter 64(2), 189 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  2. P. Freitas, C. Tsuei, T. Plaskett, Phys. Rev. B 36(1), 833 (1987). https://doi.org/10.1103/PhysRevB.36.833

    Article  ADS  Google Scholar 

  3. M. Ausloos, C. Laurent, Phys. Rev. B 37(1), 611 (1988). https://doi.org/10.1103/PhysRevB.37.611

    Article  ADS  Google Scholar 

  4. F. Vidal, J. Veira, J. Maza, F. Miguelez, E. Moran, M. Alario, Solid State Commun. 66(4), 421 (1988). https://doi.org/10.1016/0038-1098(88)90869-1

    Article  ADS  Google Scholar 

  5. F. Vidal, J. Veira, J. Maza, F. Garcia-Alvarado, E. Moran, M. Alario, J. Phys. C: Solid State Phys. 21(16), L599 (1988). https://doi.org/10.1088/0022-3719/21/16/009

    Article  ADS  Google Scholar 

  6. W. Skocpol, M. Tinkham, Rep. Prog. Phys. 38(9), 1049 (1975). https://doi.org/10.1088/0034-4885/38/9/001

    Article  ADS  Google Scholar 

  7. E. Rostamabadi, S.R. Ghorbani, X. Wang, Euro. Phys. J. B 92(5), 94 (2019). https://doi.org/10.1140/epjb/e2019-100063-8

    Article  ADS  Google Scholar 

  8. E. Talantsev, N. Strickland, P. Hoefakker, J. Xia, N. Long, Curr. Appl. Phys. 8(3–4), 388 (2008). https://doi.org/10.1016/j.cap.2007.10.036

    Article  ADS  Google Scholar 

  9. E. Giannini, R. Gladyshevskii, N. Clayton, N. Musolino, V. Garnier, A. Piriou, R. Flükiger, Curr. Appl. Phys. 8(2), 115 (2008). https://doi.org/10.1016/j.cap.2007.04.014

    Article  ADS  Google Scholar 

  10. J. Gosner, B. Kubala, J. Ankerhold, Phys. Rev. B. (2019). https://doi.org/10.1103/PhysRevB.99.144524

    Article  Google Scholar 

  11. V.N. Vieira, P. Pureur, J. Schaf, Phys. Rev. B. (2002). https://doi.org/10.1103/PhysRevB.66.224506

    Article  Google Scholar 

  12. I. Bouchoucha, F. Ben Azzouz, M. Ben Salem, J. Supercond. Nov. Magn. (2011). https://doi.org/10.1007/s10948-010-1007-2

    Article  Google Scholar 

  13. B. Sahoo, K.L. Routray, B. Panda, D. Samal, D. Behera, J. Phys. Chem. Solids 132(April), 187 (2019). https://doi.org/10.1016/j.jpcs.2019.04.035

    Article  ADS  Google Scholar 

  14. S.N. Abd-Ghani, H.K. Wye, K. Ing, R. Abd-Shukor, K. Wei, Adv. Mater. Res. (2014). https://doi.org/10.4028/www.scientific.net/AMR.895.105

  15. X. Cui, G. Liu, J. Wang, Z. Huang, Y. Zhao, B. Tao, Y. Li, Physica C: Superconduct. 466(1–2), 1 (2007). https://doi.org/10.1016/j.physc.2007.04.223

    Article  ADS  Google Scholar 

  16. C. Wang, J. Li, J. Dho, Mater. Sci. Eng.: B 182, 1 (2014). https://doi.org/10.1016/j.mseb.2013.11.021

    Article  Google Scholar 

  17. S.X. Zhang, D.C. Kundaliya, W. Yu, S. Dhar, S.Y. Young, L.G. Salamanca-Riba, S.B. Ogale, R.D. Vispute, T. Venkatesan, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2750407

    Article  Google Scholar 

  18. T. Nakamura, T. Ichitsubo, E. Matsubara, A. Muramatsu, N. Sato, H. Takahashi, Acta Materialia 53(2), 323 (2005). https://doi.org/10.1016/j.actamat.2004.09.026

    Article  ADS  Google Scholar 

  19. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Sci. Rep. 4, 1 (2015). https://doi.org/10.1038/srep04043

    Article  Google Scholar 

  20. N.A. Hamid, R. Abd-Shukor, J. Mater. Sci. 35(9), 2325 (2000). https://doi.org/10.1023/A:1004759801684

    Article  ADS  Google Scholar 

  21. G.J. Xu, J.C. Grivel, A. Abrahamsen, N. Andersen, Physica C: Superconduct. 406(1–2), 95 (2004). https://doi.org/10.1016/j.physc.2004.03.235

    Article  ADS  Google Scholar 

  22. P. Rejith, S. Vidya, J. Thomas, Materials Today: Proceedings 2(3), 997 (2015). https://doi.org/10.1016/j.matpr.2015.06.024

  23. M. Sahoo, D. Behera, J Superconduct Novel Magn 27(1), 83 (2014). https://doi.org/10.1007/s10948-013-2269-2

    Article  Google Scholar 

  24. G. Shams, A. Mahmoodinezhad, M. Ranjbar, Iran J. Sci. Technol Trans. A Sci. 42(4), 2337 (2018). https://doi.org/10.1007/s40995-017-0451-2

    Article  Google Scholar 

  25. N.A. Khalid, M.M.A. Kechik, N.A. Baharuddin, C.S. Kien, H. Baqiah, N.N.M. Yusuf, A.H. Shaari, A. Hashim, Z.A. Talib, Ceram. Int. 44(8), 9568 (2018). https://doi.org/10.1016/j.ceramint.2018.02.178

    Article  Google Scholar 

  26. Y. Slimani, E. Hannachi, A. Ekicibil, M. Almessiere, F.B. Azzouz, J. Alloys Compd. 781, 664 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

    Article  Google Scholar 

  27. A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, Phys. C Supercond. Appl. (2012). https://doi.org/10.1016/j.physc.2009.09.003

    Article  Google Scholar 

  28. Y. Slimani, E. Hannachi, M.B. Salem, A. Hamrita, M.B. Salem, F.B. Azzouz, J. Superconduct. Novel Magn. 28(10), 3001 (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  Google Scholar 

  29. S. Sangchaisri, N. Longhan, T. Kruaehong, J. Mater. Sci. Appl. Energy 6(3), 233 (2017)

    Google Scholar 

  30. G. Shams, M. Ranjbar, Braz. J. Phys. (2019). https://doi.org/10.1007/s13538-019-00701-5

    Article  Google Scholar 

  31. A. Cohen, B. Matei, Tutorials on Multiresolution in Geometric Modelling (Springer, Berlin, 2002)

    Google Scholar 

  32. L. Aslamazov, A. Larkin, 30 Years of the Landau Institute-Selected Papers. World Sci (1996). https://doi.org/10.1142/9789814317344_0004

    Article  Google Scholar 

  33. P. Pureur, R.M. Costa, P. Rodrigues Jr., J. Kunzler, J. Schaf, L. Ghivelder, J. Campá, I. Rasines, Physica C: Superconduct. 235, 1939 (1994). https://doi.org/10.1016/0921-4534(94)92191-1

    Article  ADS  Google Scholar 

  34. A. Esmaeili, H. Sedghi, M. Amniat-Talab, M. Talebian, Eur. Phys. J. B 79(4), 443 (2011). https://doi.org/10.1140/epjb/e2011-10814-x

    Article  ADS  Google Scholar 

  35. Y. Zhao, C.H. Cheng, J.S. Wang, Supercond. Sci. Technol 18(2), S43 (2005). https://doi.org/10.1088/0953-2048/18/2/010

    Article  ADS  Google Scholar 

  36. S.W. Tozer, A.W. Kleinsasser, T. Penney, D. Kaiser, F. Holtzberg, Phys. Rev. Lett. 59(15), 1768 (1987). https://doi.org/10.1103/PhysRevLett.59.1768

    Article  ADS  Google Scholar 

  37. T.R. Dinger, T.K. Worthington, W.J. Gallagher, R.L. Sandstrom, Phys. Rev. Lett. 58(25), 2687 (1987). https://doi.org/10.1103/PhysRevLett.58.2687

    Article  ADS  Google Scholar 

  38. X. Tang, Q. Liu, J. Wang, H. Chan, Appl. Phys. A 96(4), 945 (2009). https://doi.org/10.1007/s00339-009-5103-8

    Article  ADS  Google Scholar 

  39. A.A. Yusuf, A. Yahya, N.A. Khan, F.M. Salleh, E. Marsom, N. Huda, Physica C: Superconduct. 471(11–12), 363 (2011). https://doi.org/10.1016/j.physc.2011.03.007

    Article  ADS  Google Scholar 

  40. M. Cimberle, C. Ferdeghini, E. Giannini, D. Marre, M. Putti, A. Siri, F. Federici, A. Varlamov, Phys. Rev. B 55(22), R14745 (1997). https://doi.org/10.1103/PhysRevB.55.R14745

    Article  ADS  Google Scholar 

  41. N.A. Khan, N. Hassan, M. Irfan, T. Firdous, Physica B: Condens. Matter 405(6), 1541 (2010). https://doi.org/10.1016/j.physb.2009.12.036

    Article  ADS  Google Scholar 

  42. M. Farbod, M.R. Batvandi, Physica C: Superconduct. 471(3–4), 112 (2011). https://doi.org/10.1016/j.physc.2010.11.005

    Article  ADS  Google Scholar 

  43. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  ADS  Google Scholar 

  44. A. Tavana, M. Akhavan, Eur. Phys. J. B 73(1), 79 (2010). https://doi.org/10.1140/epjb/e2009-00396-7

    Article  ADS  Google Scholar 

  45. A.O. Ayaş, A. Ekicibil, S.K. Çetin, A. Coşkun, A.O. Er, Y. Ufuktepe, T. Fırat, K. Kıymaç, J. Supercond. Nov. Magn. 24(8), 2243 (2011). https://doi.org/10.1007/s10948-011-1192-7

    Article  Google Scholar 

  46. Y. Slimani, E. Hannachi, M. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui, M. Ben Salem, F. Ben Azzouz (2014) Phys Matter B Condens. Doi: https://doi.org/10.1016/J.PHYSB.2014.06.003

  47. A. Kulpa, A. Chaklader, N. Osborne, G. Roemer, B. Sullivan, D. Williams, Solid State Commun. 71(4), 265 (1989). https://doi.org/10.1016/0038-1098(89)91011-9

    Article  ADS  Google Scholar 

  48. Y. Xu, M. Suenaga, J. Tafto, R. Sabatini, A. Moodenbaugh, P. Zolliker, Phys. Rev. B 39(10), 6667 (1989). https://doi.org/10.1103/PhysRevB.39.6667

    Article  ADS  Google Scholar 

  49. L. Liu, C. Dong, J. Zhang, J. Li, Phys. C Supercond 377(3), 348 (2002). https://doi.org/10.1016/S0921-4534(01)01286-2

    Article  ADS  Google Scholar 

  50. A. Ramli, A.H. Shaari, H. Baqiah, C.S. Kean, M.M.A. Kechik, Z.A. Talib, J. Rare Earths 34(9), 895 (2016). https://doi.org/10.1016/S1002-0721(16)60112-6

    Article  Google Scholar 

  51. A. Öztürk, İ Düzgün, S. Çelebi, J. Alloys Compd. 495(1), 104 (2010). https://doi.org/10.1016/j.jallcom.2010.01.095

    Article  Google Scholar 

  52. M. Ben Salem, M. Almessiere, A. Al-Otaibi, M. Ben Salem, F. Ben Azzouz, J. Alloys Compd. 657, 286 (2016). https://doi.org/10.1016/j.jallcom.2015.10.077

    Article  Google Scholar 

  53. P. Benzi, E. Bottizzo, N. Rizzi, J. Cryst. Growth 269(2–4), 625 (2004)

    Article  ADS  Google Scholar 

  54. B.A. Albiss, N. Al-Rawashdeh, A. Abu Jabal, M. Gharaibeh, I.M. Obaidat, M.K. Hasan, K.A. Azez, J. Supercond. Nov. Magn 23(7), 1333 (2010). https://doi.org/10.1007/s10948-010-0777-x

    Article  Google Scholar 

  55. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, J. Supercond. Nov. Magn. 23(7), 1377 (2010). https://doi.org/10.1007/s10948-010-0786-9

    Article  Google Scholar 

  56. H. Salamati, P. Kameli, Solid State Commun. 125(7–8), 407 (2003)

    Article  ADS  Google Scholar 

  57. A. Nur-Syazwani, R. Abd-Shukor, J. Superconduct. Novel Magn. 32(4), 863 (2019)

    Article  Google Scholar 

  58. A.A. Aly, N. Mohammed, R. Awad, H. Motaweh, D.E.S. Bakeer, J. Superconduct. Novel Magn. 25(7), 2281 (2012). https://doi.org/10.1007/s10948-012-1621-2

    Article  Google Scholar 

  59. S. Hikami, A. Larkin, Modern Phys. Lett. B 2(05), 693 (1988)

    Article  ADS  Google Scholar 

  60. Y. Ando, S. Komiya, K. Segawa, S. Ono, Y. Kurita, Phys. Rev. Lett. 93(26), 267001 (2004)

    Article  ADS  Google Scholar 

  61. T. Timusk, B. Statt, Rep. Prog. Phys. 62(1), 61 (1999)

    Article  ADS  Google Scholar 

  62. J. Orenstein, A. Millis, Science 288(5465), 468 (2000)

    Article  ADS  Google Scholar 

  63. K. Segawa, Y. Ando, Phys. Rev. B 69(10), 104521 (2004)

    Article  ADS  Google Scholar 

  64. R.A. Klemm, Layer. Superconduct., vol. 153 (Oxford University Press, England, 2012)

    Google Scholar 

  65. F. Kneidinger, H. Michor, E. Bauer, A. Gribanov, A. Lipatov, Y. Seropegin, J. Sereni, P. Rogl, Phys. Rev. B 88(2), 024423 (2013)

    Article  ADS  Google Scholar 

  66. Y. Ando, K. Segawa, Phys. Rev. Lett. 88(16), 167005 (2002)

    Article  ADS  Google Scholar 

  67. A.T. Holmes, D. Jaccard, K. Miyake, Phys. Rev. B 69(2), 024508 (2004)

    Article  ADS  Google Scholar 

  68. H. Yuan, F. Grosche, M. Deppe, G. Sparn, C. Geibel, F. Steglich, Phys. Rev. Lett. 96(4), 047008 (2006)

    Article  ADS  Google Scholar 

  69. N. Tsujii, H. Kitazawa, T. Aoyagi, T. Kimura, G. Kido, J. Magn. Magn. Mater. 310(2), 349 (2007)

    Article  ADS  Google Scholar 

  70. X. Chaud, T. Prikhna, Y. Savchuk, A. Joulain, E. Haanappel, P. Diko, L. Porcar, M. Soliman, Mater. Sci. Eng.: B 151(1), 53 (2008). https://doi.org/10.1016/j.mseb.2008.02.006

    Article  Google Scholar 

  71. P. Mayorga, D. Téllez, Q. Madueno, J. Alfonso, J. Roa-Rojas, Braz. J. Phys. 36(3B), 1084 (2006). https://doi.org/10.1590/S0103-97332006000600076

    Article  ADS  Google Scholar 

  72. J.R. Rojas, A. Jurelo, R.M. Costa, L.M. Ferreira, P. Pureur, M. Orlando, P. Prieto, G. Nieva, Physica C: Superconduct. 341, 1911 (2000). https://doi.org/10.1016/S0921-4534(00)01360-5

    Article  ADS  Google Scholar 

  73. M. Sahoo, D. Behera, J. Mater. Sci. Eng. 01, 04 (2012). https://doi.org/10.4172/2169-0022.1000115

    Article  Google Scholar 

  74. J.C. Le Guillou, J. Zinn-Justin, Phys. Rev. B 21(9), 3976 (1980). https://doi.org/10.1103/PhysRevB.21.3976

    Article  ADS  MathSciNet  Google Scholar 

  75. W. Holm, Y. Eltsev, Ö. Rapp, Phys. Rev. B 51(17), 11992 (1995). https://doi.org/10.1103/PhysRevB.51.11992

    Article  ADS  Google Scholar 

  76. J.T. Kim, N. Goldenfeld, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 56(1), 118 (1997). https://doi.org/10.1103/PhysRevB.56.118

    Article  ADS  Google Scholar 

  77. A.R. Jurelo, J.V. Kunzler, J. Schaf, P. Pureur, J. Rosenblatt, Phys. Rev. B 56(22), 14815 (1997). https://doi.org/10.1103/PhysRevB.56.14815

    Article  ADS  Google Scholar 

  78. R. Menegotto Costa, P. Pureur, L. Ghivelder, J.A. Campá, I. Rasines, Phys. Rev. B 56(17), 10836 (1997). https://doi.org/10.1103/PhysRevB.56.10836

    Article  ADS  Google Scholar 

  79. S. Sujinnapram, P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, S. Ratreng, Bullet. Mater. Sci. 34(5), 1053 (2011). https://doi.org/10.1007/s12034-011-0130-4

    Article  Google Scholar 

  80. V. Bart\(\dot{u}\)něk, O. Smrčková, Ceram. - Silikaty 54(2), 133 (2010). http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=351

  81. J. Roa-Rojas, D.L. Téllez, M. Rojas Sarmiento, Braz. J. Phys. (2006). https://doi.org/10.1590/s0103-97332006000600081

    Article  Google Scholar 

  82. A. Kujur, D. Behera, Thin Solid Films 520(6), 2195 (2012). https://doi.org/10.1016/j.tsf.2011.11.008

    Article  ADS  Google Scholar 

  83. X. Wang, J. Horvat, G. Gu, K. Uprety, H. Liu, S. Dou, Physica C: Superconduct. 337(1–4), 221 (2000). https://doi.org/10.1016/S0921-4534(00)00105-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Fatemi, for his assistance through the preparation of the samples. Special thanks go to Mr. Jamali and Mr. Nowroozi from Islamic Azad University-Shiraz Branch and Mr. Mahmoodinezhad from the Brandenburg University of Technology, Germany, for their support and suitable notions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamabbas Shams.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramani, S., Shams, G. & Soltani, Z. Excess Conductivity of High-Temperature Superconductors Polycrystalline \(Y_3Ba_5Cu_8O_{18\pm \delta }\) Doped with \(TiO_2\) Nanoparticles. J Low Temp Phys 205, 55–81 (2021). https://doi.org/10.1007/s10909-021-02614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02614-7

Keywords

Navigation