Skip to main content
Log in

Investigation of Cylindrical Waveguides with Periodic Wedge-Shaped Azimuthal Corrugations Excited by TE Modes Using the FDTD Method

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Modern gyrotron beam tunnels are rather complicated structures designed to enhance the suppression of the parasitic oscillations, which may be excited there. In some beam tunnel designs, azimuthal corrugations are engraved on their walls to further improve the suppression of these oscillations. In this work, we investigate the effect of the geometrical properties of the corrugations on the propagation characteristics of TE modes for the simplified model of a smooth waveguide with an azimuthally corrugated region. For this structure, the scattering parameters are calculated and the mode conversion is investigated with the in-house FDTD code COCHLEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Erckmann and U. Gasparino, Electron cyclotron resonance heating and current drive in toroidal fusion plasmas, Plasma Phys. Control. Fusion, vol. 36, no 36, pp. 1869–1962. https://doi.org/10.1088/0741-3335/36/12/001

  2. P. Muggli, M. Q. Tran, and T. M. Tran, Parasitic oscillation in and suppression of a gyrotron backward wave mode in a low-Q 8 GHz gyrotron, IEEE Trans. Plasma Sci., vol. 20, no. 4, pp. 458–465, Aug. 1992. https://doi.org/10.1109/27.256774

    Article  Google Scholar 

  3. M. Pedrozzi et al., Electron beam instabilities in gyrotron beam tunnels, Physics of Plasmas, vol. 5, no. 6, pp. 2421-2430, 1998. https://doi.org/10.1063/1.872918

    Article  Google Scholar 

  4. J. Genoud et al., Parasitic oscillations in smooth-wall circular symmetric gyrotron beam ducts, J. Infrared Millim. Terah. Waves, vol. 40, pp. 131-149, 2019. https://doi.org/10.1007/s10762-018-0548-5

    Article  Google Scholar 

  5. G. Gantenbein et al., Experimental investigations and analysis of parasitic RF oscillations in high-power gyrotrons, IEEE Trans. Plasma Sci., vol. 38, no. 6, pp. 1168-1177, 2010. https://doi.org/10.1109/TPS.2010.2041366

    Article  Google Scholar 

  6. H. Shoyama et al., High-efficiency oscillation of 170 GHz high-power gyrotron at TE31,8 mode using depressed collector, Jpn. J. Appl. Phys. Lett., vol. 40, no. 2, pp. 906–908. https://doi.org/10.1143/JJAP.40.L906

  7. K. Sakamoto et al., Development of 170 and 110 GHz gyrotrons for fusion devices, Nucl. Fusion, vol. 43, pp. 729–737, 2003. https://doi.org/10.1088/0029-5515/43/8/314

    Article  Google Scholar 

  8. I. I. Antakov, I. G. Gachev and E. V. Zasypkin, Self-excitation of spurious oscillations in the drift region of gyrotrons and their influence on gyrotron operation, IEEE Trans. Plasma Sci., vol. 22, no. 5, pp. 878–882, 1994. https://doi.org/10.1109/27.338303

    Article  Google Scholar 

  9. G. G. Denisov, V. E. Zapevalov, A. G. Litvak and V. E. Myasnikov, Megawatt gyrotrons for ECR heating and current-drive systems in controlled-fusion facilities, Radiophys. Quantum Electron., vol. 46, no. 10, pp. 757–768, 2003. https://doi.org/10.1023/B:RAQE.0000026869.75334.a1

    Article  Google Scholar 

  10. G. Singh et al., Analysis of a vane-loaded gyro-TWT for the gain-frequency response, IEEE Trans. Plasma Sci., vol. 35, no. 5, pp. 2130-2138, 2004. https://doi.org/10.1109/TPS.2004.835528

    Article  Google Scholar 

  11. M. Thumm, High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations, Int. J. Electronics, vol. 57, no. 6, pp. 1225-1246, 1984. https://doi.org/10.1109/TPS.2004.835528

    Article  Google Scholar 

  12. I. G. Tigelis, J. L. Vomvoridis and S. Tzima, High-frequency electromagnetic modes in a dielectric-ring loaded beam tunnel, IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 922-930,1998 . https://doi.org/10.1109/27.700872

    Article  Google Scholar 

  13. G. P. Latsas, Z. C. Ioannidis and I. G. Tigelis, Dependence of parasitic modes on geometry and attenuation in gyrotron beam tunnels, IEEE Trans. Plasma Sci., vol. 40, no. 6, pp. 1538-1544, 2012 https://doi.org/10.1109/TPS.2012.2192294

    Article  Google Scholar 

  14. I. G. Chelis, K. A. Avramidis and J. L. Vomvoridis, Resonant modes of disk-loaded cylindrical structures with open boundaries, IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1781-1790, 2015. https://doi.org/10.1109/TMTT.2015.2420093

    Article  Google Scholar 

  15. I. G. Chelis, K. A. Avramidis, Z. C. Ioannidis and I. G. Tigelis, Improved suppression of parasitic oscillations in gyrotron beam tunnels by proper selection of the lossy ceramic material, IEEE Trans. Electron Devices, vol. 65, no. 6, pp. 2301-2307, 2018. https://doi.org/10.1109/TED.2017.2784198

    Article  Google Scholar 

  16. G. P. Latsas, A. I. Zisis and I. G. Tigelis, Computational studies on the suppression of parasitic oscillations in gyrotron beam tunnels, IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3479-3485, 2018. https://doi.org/10.1109/TED.2018.2840829

    Article  Google Scholar 

  17. Y. Zhang et al., An investigation of periodic waveguides with axial and azimuthal corrugations, IEEE Trans. Plasma Sci., 2005, 33 (6):2017-2026. https://doi.org/10.1109/TPS.2005.860114

    Article  Google Scholar 

  18. K. Edee, J. P. Plumey and J. Chandezon, On the Rayleigh–Fourier method and the Chandezon method: Comparative study, Optics Communications, vol. 286, pp. 34-41, 2013. https://doi.org/10.1016/j.optcom.2012.08.088

    Article  Google Scholar 

  19. D. V. Peponis, G. P. Latsas, Z. C. Ioannidis and I. G.Tigelis, Dispersion properties of rectangularly corrugated waveguide structures by the in-house 3D FDTD code COCHLEA in cylindrical coordinates, IET Microw. Antennas Propag., vol. 13, no. 1, pp. 28-34, 2019. https://doi.org/10.1049/iet-map.2018.5129

    Article  Google Scholar 

  20. A. Taflove and S. C. Hagness, Computational electrodynamics-the finite difference time-domain method, Artech House, Boston, 2005. https://doi.org/10.1016/B978-012170960-0/50046-3

    Book  MATH  Google Scholar 

  21. J. Chi et al., An improved cylindrical FDTD algorithm and its application to field-tissue interaction study in MRI, IEEE Trans. Magnetics, vol. 47, no. 2, pp. 466–470, 2010. https://doi.org/10.1109/TMAG.2010.2100098

    Article  Google Scholar 

  22. J.-P. Berenger, Perfectly matched layer (PML) for computational electromagnetics, Morgan & Claypool, San Rafael, 2007. https://doi.org/10.2200/S00030ED1V01Y200605CEM008

    Book  Google Scholar 

  23. DS Simulia CST Studio Suite. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/

  24. X. Cui et al., High-Efficiency, Broadband Converter From A Rectangular Waveguide TE10 Mode to A Circular Waveguide TM01 Mode for Overmoded Device Measurement, IEEE Access, vol. 6, pp. 14996-15003, 2018. https://doi.org/10.1109/ACCESS.2018.2815530

    Article  Google Scholar 

  25. S. Choocadee and S. Akatimagool, Design and implementation of band pass filters in waveguide using simulation tools, The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011, pp. 248–251, 2011. https://doi.org/10.1109/ECTICON.2011.5947819

  26. Z. C. Ioannidis, K. A. Avramidis and I. G. Tigelis, Selectivity properties of coaxial gyrotron cavities with mode converting corrugations, IEEE Trans. Electron Devices, vol. 63, no. 8, pp.1299–1306, 2016. https://doi.org/10.1109/TED.2016.2518217

  27. N. F. Kovalev, I. M. Orlova and M. I. Petelin, Wave transformation in a multimode waveguide with corrugated walls, Radiophys Quantum Electron, vol. 11, pp. 449-450, 1968. https://doi.org/10.1007/BF01034380

    Article  Google Scholar 

  28. M. Neilson, P. E. Latham, M. Caplan and W. G. Lawson, Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation, IEEE Trans. Microw. Theory Techn., vol. 37, no. 8, pp. 1165–1170, 1989. https://doi.org/10.1109/22.31074

Download references

Acknowledgment

The authors would like to thank Prof. M. Q. Tran and Dr. I. Chelis for their valuable comments and advices. This work was carried out within the framework of the EUROfusion Consortium and received funding from the EURATOM research and training programme 2014–2018 and 2019–2020 under grant agreement no 633053. The numerical simulations were performed in the National HPC facility – ARIS – of Greek Research & Technology Network (GRNET) as well as in CINECA Marconi-Fusion. The contents of this paper are the sole responsibility of the authors and do not necessarily represent the views of the European Commission or its services or EUROfusion Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios V. Peponis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peponis, D.V., Latsas, G.P. & Tigelis, I.G. Investigation of Cylindrical Waveguides with Periodic Wedge-Shaped Azimuthal Corrugations Excited by TE Modes Using the FDTD Method. J Infrared Milli Terahz Waves 42, 761–771 (2021). https://doi.org/10.1007/s10762-021-00809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00809-3

Keywords

Navigation