Skip to main content
Log in

Exact SDP relaxations of quadratically constrained quadratic programs with forest structures

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study the exactness of the semidefinite programming (SDP) relaxation of quadratically constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix are examined. We prove that if the rank of the aggregate sparsity matrix is not less than \(n-1\) and the matrix remains positive semidefinite after replacing some off-diagonal nonzero elements with zeros, then the standard SDP relaxation provides an exact optimal solution for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy the exactness condition on the rank. The exactness is attained by considering the feasibility of the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed objective functions, under the assumption that the feasible region is compact. We generalize our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that QCQPs with two constraints can be solved exactly by the SDP relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adachi, S., Nakatsukasa, Y.: Eigenvalue-based algorithm and analysis for nonconvex qcqp with one constraint. Math. Program. 173(1), 79–116 (2019)

    Article  MathSciNet  Google Scholar 

  2. Anjos, M.F., Lasserre, J.B., editors. Handbook on Semidefinite, Conic and Polynomial Optimization, volume 166 of International Series in Operations Research & Management Science. Springer, New York, NY 10013, USA (2012)

  3. Anton, H., Rorres, C.: Elementary Linear Algebra: Applications Version. Wiley, New York, 11th ed. (2014)

  4. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129(1), 129 (2011)

    Article  MathSciNet  Google Scholar 

  5. Biswas, P., Lian, T.-C., Wang, T.-C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  6. Bose, S., Gayme, D.F., Chandy, K.M., Low, S.H.: Quadratically constrained quadratic programs on acyclic graphs with application to power flow. IEEE Trans. Netw. Syst. 2(3), 278–287 (2015)

    Article  MathSciNet  Google Scholar 

  7. Burer, S., Ye, Y.: Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs. Math. Program. 181(1), 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  8. El-Mikkawy, M.: A note on a three-term recurrence for a tridiagonal matrix. Appl. Math. Comput. 139(2), 503–511 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via matrix completion I: General framework. SIAM J. Optim. 11(3), 647–674 (2001)

    Article  MathSciNet  Google Scholar 

  10. Garvey, S.D., Tisseur, F., Friswell, M.I., Penny, J.E.T., Prells, U.: Simultaneous tridiagonalization of two symmetric matrices. Int. J. Numer. Meth. Eng. 57(12), 1643–1660 (2003)

    Article  MathSciNet  Google Scholar 

  11. Ito, N., Kim, S., Kojima, M., Takeda, A., Toh, K.: BBCPOP: a sparse doubly nonnegative relaxation of polynomial optimization problems with binary, box and complementarity constraints. ACM Trans. Math. Softw. 45(3), 34 (2019)

    Article  MathSciNet  Google Scholar 

  12. Johnson, C.R., Leal Duarte, A.: The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree. Linear Multilinear Algebra 46(1–2), 139–144 (1999)

    Article  MathSciNet  Google Scholar 

  13. Johnson, C.R., Leal-Duarte, A.: Converse to the parter-wiener theorem: the case of non-trees. Discret. Math. 306(23), 3125–3129 (2006)

    Article  MathSciNet  Google Scholar 

  14. Johnson, C.R., Leal Duarte, A., Saiago, C.M., Sutton, B.D., Witt, A.J.: On the relative position of multiple eigenvalues in the spectrum of an hermitian matrix with a given graph. Linear Algebra Appl. 363, 147–159 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26(2), 143–154 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Program. 129(1), 33–68 (2011)

    Article  MathSciNet  Google Scholar 

  17. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)

    Article  MathSciNet  Google Scholar 

  18. Laurent, M., Varvitsiotis, A.: A new graph parameter related to bounded rank positive semidefinite matrix completions. Math. Program. 145(1), 291–325 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  20. Madani, R., Sojoudi, S., Fazelnia, G., Lavaei, J.: Finding low-rank solutions of sparse linear matrix inequalities using convex optimization. SIAM J. Optim. 27(2), 725–758 (2017)

    Article  MathSciNet  Google Scholar 

  21. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion II: Implementation and numerical results. Math. Program. 95(2), 303–327 (2003)

    Article  MathSciNet  Google Scholar 

  22. Nesterov,Y., Wolkowicz, H., Ye,Y.: Semidefinite Programming Relaxations of Nonconvex Quadratic Optimization, volume 27 of Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, pp. 361–419. Springer, Boston, MA (2000)

  23. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23(2), 339–358 (1998)

    Article  MathSciNet  Google Scholar 

  24. Pólik, I., Terlaky, T.: A survey of the s-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  Google Scholar 

  25. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discret. Optim. 6(3), 231–241 (2009)

    Article  MathSciNet  Google Scholar 

  26. Safarina, S., Moriguchi, S., Mullin, T.J., Yamashita, M.: Conic relaxation approaches for equal deployment problems. Discret. Appl. Math. 275, 111–125 (2020)

    Article  MathSciNet  Google Scholar 

  27. Safarina, S., Mullin, T.J., Yamashita, M.: Polyhedral-based methods for mixed-integer socp in tree breeding. J. Oper. Res. Soc. Jpn 62(4), 133–151 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Sheen, H., Yamashita, M.: Exploiting aggregate sparsity in second order cone relaxations for quadratic constrained quadratic programming problems. To appear in Optim. Methods Softw., https://doi.org/10.1080/10556788.2020.1827256

  29. Sidje, R.B.: On the simultaneous tridiagonalization of two symmetric matrices. Numer. Math. 118(3), 549–566 (2011)

    Article  MathSciNet  Google Scholar 

  30. Sojoudi, S., Lavaei, J.: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim. 24(4), 1746–1778 (2014)

    Article  MathSciNet  Google Scholar 

  31. Wang, A.L., Kılınç-Karzan, F.: The generalized trust region subproblem: solution complexity and convex hull results. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01560-8

  32. Wang, A.L., Kılınç-Karzan, F.: On the tightness of sdp relaxations of qcqps. To appear in Math. Program. (2021)

  33. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Springer, New York (2000)

    Book  Google Scholar 

  34. Yang, L.Q., Sun, D.F., Toh, K.C.: SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3), 331–366 (2015)

    Article  MathSciNet  Google Scholar 

  35. Zhou, F., Chen,Y., Low, S.H.: Sufficient conditions for exact semidefinite relaxation of optimal power flow in unbalanced multiphase radial networks. In: IEEE 58th Conference on Decision and Control (CDC), vol. 58, pp. 6227–6233 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunyoung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Kim: The research was supported by NRF 2021-R1A2C1003810. M. Yamashita: This research was partially supported by JSPS KAKENHI (Grant No. 20H04145).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuma, G., Fukuda, M., Kim, S. et al. Exact SDP relaxations of quadratically constrained quadratic programs with forest structures. J Glob Optim 82, 243–262 (2022). https://doi.org/10.1007/s10898-021-01071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01071-6

Keywords

Navigation