Skip to main content
Log in

Raman spectroscopy signatures for monomeric, dimeric and trimeric zinc dimethoxide with tetrahydrofuran adduct and early hydrolysis-condensation products on Au(111) surface: theoretical and experimental approach

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

It is widely accepted that the use of alkyl zinc and alkyl zinc alkoxide precursors are usually preferred instead of the popularly used zinc acetate precursor to obtaining better control on the synthesis of different zinc-oxo clusters and nanostructures. However, there are very few reports about zinc dialkoxides precursors and not many ones studying these precursors in a typical hydrolysis-condensation route. In the present report, we focus on the study of zinc dimethoxide structural features and their Raman spectroscopy signatures in the absence and presence of tetrahydrofuran (THF) adduct. Our theoretical calculations using Density Functional Theory (DFT) reveal that monomeric, dimeric and trimeric zinc dimethoxide exhibit distinctive Raman signatures, particularly at the low frequency region. In addition, some particular vibrational modes of zinc dimethoxide also evidenced some characteristic shifting and splitting in the presence of explicit THF coordination molecules. Our experimental approach using surface-enhanced Raman spectroscopy (SERS) reveals a quite complex combination of Raman signatures associated to zinc dimethoxide clusters corroborating tetrahydrofuran coordination and further early hydrolysis-condensation scenario. We aim to shed some light on the chemical structure of this particular zinc dimethoxide precursor and some of its early hydrolysis-condensation products employing a powerful, popular and versatile technique such as Raman spectroscopy as it can be a promising candidate to access and simultaneously monitor the formation of novel zinc-oxo clusters and nanostructures.

Highlights

  • Surface enhanced Raman spectroscopy for zinc dimethoxide with explicit tetrahydrofuran adduct.

  • Strong correlation between experimental and theoretical Raman signatures.

  • Hydrolysis and early condensation stages for zinc dimethoxide with tetrahydrofuran adduct.

  • Evidence of planar-like hydroxyl-terminated ZnO small clusters onto Au(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-Temperature Ultraviolet Nanowire Nanolasers. Science 391:1897–1899

    Article  Google Scholar 

  2. Kind H, Yan H, Law M, Messer B, Yang P (2002) Nanowire Ultraviolet Photodetectors and Optical Switches. Adv Mater 14:158–160

    Article  CAS  Google Scholar 

  3. Liu B, Zeng HC (2003) Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J Am Chem Soc 125:4430–4431

    Article  CAS  Google Scholar 

  4. Claeyssens F, Freeman CL, Allan NL, Sun Y, Ashfold MNR, Harding JH (2005) Growth of ZnO thin films-experiment and theory. J Mater Chem 15:139–148

    Article  CAS  Google Scholar 

  5. Tu ZC, Hu X (2006) Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B 74:035434

    Article  CAS  Google Scholar 

  6. Tusche C, Meyerheim HL, Kirschner J (2007) Observation of Depolarized ZnO(0001) Monolayers: formation of Unreconstructed Planar Sheets. Phys Rev Lett 99:026102

    Article  CAS  Google Scholar 

  7. Schott V, Oberhofer H, Birkner A, Xu M, Wang Y, Muhler M, Reuter K, Woll C (2013) Chemical Activity of Thin Oxide Layers: strong Interactions with the Support Yield a New Thin-Film Phase of ZnO. Angew Chem Int Ed 52:11925–11929

    Article  CAS  Google Scholar 

  8. Weirum G, Barcaro G, Fortunelli A, Weber F, Schennach R, Surnev S, Netzer FP (2010) Growth and Surface Structure of Zinc Oxide Layers on a Pd(111) Surface. J Phys Chem C 114:15432–15439

    Article  CAS  Google Scholar 

  9. Liu BH, Boscoboinik AJ, Cui Y, Shaikhutdinov S, Freund HJ (2015) Stabilization of Ultrathin Zinc Oxide Films on Metals: reconstruction versus Hydroxylation. J Phys Chem C 119:7842–7847

    Article  CAS  Google Scholar 

  10. Shiotari A, Liu BH, Jaekel S, Grill L, Shaikhutdinov S, Freund HJ, Wolf M, Kumagai T (2014) Local Characterization of Ultrathin ZnO Layers on Ag(111) by Scanning Tunneling Microscopy and Atomic Force Microscopy. J Phys Chem C 118:27428–27435

    Article  CAS  Google Scholar 

  11. Pan Q, Liu BH, McBriarty ME, Martynova Y, Groot IMN, Wang S, Bedzyk MJ, Shaikhutdinov S, Freund HJ (2014) Reactivity of Ultra-Thin ZnO Films Supported by Ag(111) and Cu(111): a Comparison to ZnO/Pt(111). Catal Lett 144:648–655

    Article  CAS  Google Scholar 

  12. Liu BH, McBriarty ME, Bedzyk MJ, Shaikhutdinov S, Freund HJ (2014) Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper. J Phys Chem C 118:28725–28729

    Article  CAS  Google Scholar 

  13. Deng X, Yao K, Sun K, Li WX, Lee J, Matranga C (2013) Growth of Single- and Bilayer ZnO on Au(111) and Interaction with Copper. J Phys Chem C 117:11211–11218

    Article  CAS  Google Scholar 

  14. Quang HT, Bachmatiuk A, Dianat A, Ortmann F, Zhao J, Warner JH, Eckert J, Cunniberti G, Rümmeli MH (2015) In Situ Observations of Free-Standing Graphene-like Mono- and Bilayer ZnO Membranes. ACS Nano 9:11408–11413

    Article  CAS  Google Scholar 

  15. Hong HK, Jo J, Hwang D, Lee J, Kim NY, Son S, Kim JH, Jin MJ, Jun YC, Erni R, Kwak SK, Yoo JW, Lee Z (2017) Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene. Nano Lett 17:120–127

    Article  CAS  Google Scholar 

  16. Sahoo T, Nayak SK, Chelliah P, Rath MK, Paridac B (2016) Observations of two-dimensional monolayer zinc oxide. Mater Res Bull 75:134–138

    Article  CAS  Google Scholar 

  17. Leung AHM, Pike SD, Clancy AJ, Yau HC, Lee WJ, Orchard KL, Shaffer MSP, Williams CK (2018) Layered zinc hydroxide monolayers by hydrolysis of organozincs. Chem Sci 9:2135–2146

    Article  CAS  Google Scholar 

  18. Prochowicza D, Sokołowski K, Lewiński J (2014) Zinc hydroxides and oxides supported by organic ligands: synthesis and structural diversity. Coord Chem Rev 270–271:112–126

    Article  CAS  Google Scholar 

  19. Mąkolski Ł, Szejko V, Zelga K, Tulewicz A, Bernatowicz P, Justyniak I, Lewiński J (2021) Unravelling Structural Mysteries of Simple Organozinc Alkoxides. Chem Eur J 27:5666–5674

  20. Szlachetko J, Kubas A, Cieślak AM, Sokołowski K, Mąkolski Ł, Czapla-Masztafiak J, Sá J, Lewiński J (2018) Hidden gapless states during thermal transformations of preorganized zinc alkoxides to zinc oxide nanocrystals. Mater Horiz 5:905–911

    Article  CAS  Google Scholar 

  21. Jana S, Berger RJF, Frohlich R, Pape T, Mitzel NW (2007) Oxygenation of Simple Zinc Alkyls: surprising Dependence of Product Distributions on the Alkyl Substituents and the Presence of Water. Inorg Chem 46:4293–4297

    Article  CAS  Google Scholar 

  22. Sokołowski K, Justyniak I, Bury W, Grzonka J, Kaszkur Z, Makolski Ł, Dutkiewicz M, Lewalska A, Krajewska E, Kubicki D, Wujcik K, Kurzydłowski KJ, Lewiński J (2015) tert-Butyl(tert-butoxy)zinc Hydroxides: Hybrid Models for SingleSource Precursors of ZnO Nanocrystals. Chem Eur J 21:5488–5495

  23. Manzi JA, Knapp CE, Parkin IP, Carmalt CJ (2016) Synthesis of Trimeric Organozinc Compounds and their Subsequent Reaction with Oxygen. ChemistryOpen 5:301–305

    Article  CAS  Google Scholar 

  24. Lee D, Wolska-Pietkiewicz M, Badoni S, Grala A, Lewiński J, De Pape G (2019) Disclosing Interfaces of ZnO Nanocrystals Using Dynamic Nuclear Polarization: Sol-Gel versus Organometallic Approach. Angew Chem Int Ed 131:17323–17328

    Article  Google Scholar 

  25. Carnes CL, Klabunde KJ (2000) Synthesis, Isolation, and Chemical Reactivity Studies of Nanocrystalline Zinc Oxide. Langmuir 16:3764–3772

    Article  CAS  Google Scholar 

  26. Ristic M, Music S, Ivanda M, Popovic S (2005) Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J Alloy Compd 397:L1–L4

    Article  CAS  Google Scholar 

  27. Schneider JJ, Hoffmann RC, Engstler J, Klyszcz A, Erdem E, Jakes P, Eichel RA, Pitta-Bauermann L, Bill J (2010) Synthesis, Characterization, Defect Chemistry, and FET Properties of Microwave-Derived Nanoscaled Zinc Oxide. Chem Mater 22:2203–2212

    Article  CAS  Google Scholar 

  28. Omata T, Takahashi K, Hashimoto S, Maeda Y, Nose K, Otsuka-Yao-Matsuo S, Kanaori K (2011) UV luminescent organic-capped ZnO quantum dots synthesized by alkoxide hydrolysis with dilute water. J Colloid Inter Sci 355:274–281

    Article  CAS  Google Scholar 

  29. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  30. Soler-Illia GJAA, Scolan E, Louis A, Albouy PA, Sanchez C (2001) Design of meso-structured titanium oxo based hybrid organic–inorganic networks. N J Chem 25:156–165

    Article  CAS  Google Scholar 

  31. Nakaso K, Han B, Ahn KH, Choi M, Okuyama K (2003) Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. Aerosol Sci 34:869–881

    Article  CAS  Google Scholar 

  32. Grapperhaus CA, O’Toole MG, Mashuta MS (2006) Synthesis and Structure of the Tetradeca-Iron(III) Oxide-Alkoxide Cluster [Bu4N]2[Fe14O8(OCH2CH3)20Cl8]. Inorg Chem Commun 9:1204–1206

    Article  CAS  Google Scholar 

  33. Xiao L, Shen H, von Hagen R, Pan J, Belkoura L, Mathur S (2010) Microwave assisted fast and facile synthesis of SnO2quantum dots and their printing applications. Chem Commun 46:6509–6511

    Article  CAS  Google Scholar 

  34. Zhao J, Liu Y, Fan M, Yuan L, Zou X (2015) From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials. Inorg Chem Front 2:198–212

    Article  CAS  Google Scholar 

  35. Takenaka S, Miyake S, Uwai S, Matsune H, Kishida M (2015) Preparation of Metal Oxide Nanofilms Using Graphene Oxide as a Template. J Phys Chem C 119:12445–12454

    Article  CAS  Google Scholar 

  36. Saini A, Jat SK, Shekhawat DS, Kumar A, Dhayal V, Agarwal DC (2017) Oxime-modified aluminium(III) alkoxides: potential precursors for γ-alumina nano-powders and optically transparent alumina film. Mater Res Bull 93:373–380

    Article  CAS  Google Scholar 

  37. Mombrú D, Romero M, Faccio R, Castiglioni J, Mombrú AW (2017) In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications. J Solid State Chem 250:60–67

    Article  CAS  Google Scholar 

  38. Mombrú D, Romero M, Faccio R, Mombrú AW (2017) Microstructure evolution, thermal stability and fractal behavior of water vapor flow assisted in situ growth poly(vinylcarbazole)-titania quantum dots nanocomposites. J Phys Chem Solids 111:199–206

    Article  CAS  Google Scholar 

  39. Steudel R, Steudel Y (2006) Geometries, Thermodynamic Properties and Reactions of Methylzinc Alkoxide Clusters Studied by Density Functional Theory Calculations. J Phys Chem A 110:8912–8924

    Article  CAS  Google Scholar 

  40. Steudel Y, Steudel R (2010) Structural Isomerism and Thermodynamic Properties of the Methylzinc Alkoxide Molecules (MeZnOR)n (R = Me, tBu) and Cations [(MeZnOMe)n]+ (n = 3, 4) Studied by B3LYP and PCM Calculations. J Phys Chem A 114:6370–6376

    Article  CAS  Google Scholar 

  41. Romero M, Mombrú D, Pignanelli F, Faccio R, Mombrú AW (2021) From Chain‐ to Graphene‐like Hydroxyl‐terminated (ZnO) n Clusters with n ≤6 Obtained via Zinc Dimethoxide Hydrolysis and Condensation: Ab initio Structural, Electronic, Vibrational and Optical Properties Calculations. ChemPhysChem 22:849–863

    Article  CAS  Google Scholar 

  42. Hohenberg P, Kohn W (1964) Density Functional Theory. Phys Rev 136:B864–B871

    Article  Google Scholar 

  43. Kohn W, Sham LJ (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09. Gaussian, Inc, Wallingford, CT, Revision B01

    Google Scholar 

  45. Becke AD (1993) Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York

    Google Scholar 

  47. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  48. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  49. Cheng X, Liu Y, Chen D (2011) Mechanisms of Hydrolysis–Oligomerization of Aluminum Alkoxide Al(OC3H7)3. J Phys Chem A 115:4719–4728

    Article  CAS  Google Scholar 

  50. Cheng X, Chen D, Liu Y (2012) Mechanisms of Silicon Alkoxide Hydrolysis–Oligomerization Reactions: a DFT Investigation. ChemPhysChem 13:2392–2404

    Article  CAS  Google Scholar 

  51. Cheng X, Ding W, Liu Y, Chen D (2013) Mechanistic investigations of Al(OH)3 oligomerization mechanisms. J Mol Model 19:1565–1572

    Article  CAS  Google Scholar 

  52. Cypryk M, Gostyński B, Pokora M (2019) Hydrolysis of trialkoxysilanes catalysed by the fluoride anion. Nucleophilic vs. basic catalysis. N. J Chem 43:15222–15232

    Article  CAS  Google Scholar 

  53. Tadayyoni MA, Weaver MJ (1986) Adsorption and electrooxidation of carbon monoxide at the gold-aqueous interface studied by surface-enhanced Raman spectroscopy. Langmuir 2:179–183

    Article  CAS  Google Scholar 

  54. Santiago-Rodríguez Y, Herron JA, Curet-Arana MC, Mavrikakis M (2014) Atomic and molecular adsorption on Au(111). Surf Sci 627:57–69

    Article  CAS  Google Scholar 

  55. Inagaki M, Motobayashi K, Ikeda K (2019) Low-frequency surface-enhanced Raman scattering spectroscopy at metal electrode surfaces. Curr Opin Electrochem 17:143–148

    Article  CAS  Google Scholar 

  56. Inagaki M, Isogai T, Motobayashi K, Lin KQ, Ren B, Ikeda K (2020) Electronic and vibrational surface-enhanced Raman scattering: from atomically defined Au(111) and (100) to roughened Au. Chem Sci 11:9807–9817

    Article  CAS  Google Scholar 

  57. Bernard MC, Hugot-Le Goff A, Massinon D, Phillips N (1993) Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy. Corros Sci 35:1339–1349

    Article  CAS  Google Scholar 

  58. Bernard MC, Hugot-Le Goff A, Phillips N (1995) In Situ Raman Study of the Corrosion of Zinc‐Coated Steel in the Presence of Chloride: I. Characterization and Stability of Zinc Corrosion Products. J Electrochem Soc 142:2162–2167

    Article  CAS  Google Scholar 

  59. Ohtsuka T, Matsuda M (2003) In Situ Raman Spectroscopy for Corrosion Products of Zinc in Humidified Atmosphere in the Presence of Sodium Chloride Precipitate. Corrosion 59:407–413

    Article  CAS  Google Scholar 

  60. Demel J, Hynek J, Kovář P, Dai Y, Taviot-Guého C, Demel O, Pospíšil M, Lang K (2014) Insight into the Structure of Layered Zinc Hydroxide Salts Intercalated with Dodecyl Sulfate Anions. J Phys Chem C 118:27131–27141

    Article  CAS  Google Scholar 

  61. Chen HC, Chen CH, Hsu CS, Chen TL, Liao MY, Wang CC, Tsai CF, Chen HM (2018) In Situ Creation of Surface-Enhanced Raman Scattering Active Au–AuOx Nanostructures through Electrochemical Process for Pigment Detection. ACS Omega 3:16576–16584

    Article  CAS  Google Scholar 

  62. Pfisterer JHK, Nattino F, Zhumaev UE, Breiner M, Feliu JM, Marzari N, Domke KF (2020) Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. ACS Catal 10:12716–12726

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Uruguayan CSIC, ANII, and PEDECIBA funding institutions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Computational calculations, material preparation, data collection and analysis were performed by MR, DM and FP. The first draft of the paper was written by MR, RF and AWM and all authors commented on previous versions of the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Mariano Romero, Ricardo Faccio or Álvaro W. Mombrú.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, M., Mombrú, D., Pignanelli, F. et al. Raman spectroscopy signatures for monomeric, dimeric and trimeric zinc dimethoxide with tetrahydrofuran adduct and early hydrolysis-condensation products on Au(111) surface: theoretical and experimental approach. J Sol-Gel Sci Technol 102, 160–171 (2022). https://doi.org/10.1007/s10971-021-05607-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05607-w

Keywords

Navigation