Skip to main content

Advertisement

Log in

Simulating Radial Pressure Waveforms with a Mock Circulatory Flow Loop to Characterize Hemodynamic Monitoring Systems

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Mock circulatory loops (MCLs) can reproducibly generate physiologically relevant pressures and flows for cardiovascular device testing. These systems have been extensively used to characterize the performance of therapeutic cardiac devices, but historically MCLs have had limited use for assessing patient monitoring systems. Here, we adapted an MCL to include peripheral components and evaluated its utility for qualitative and quantitative benchtop testing of hemodynamic monitoring devices.

Methods

An MCL was designed to simulate three physiological hemodynamic states: normovolemia, cardiogenic shock, and hyperdynamic circulation. The system was assessed for stability in pressure and flow values over time, repeatability, waveform morphology, and systemic-peripheral pressure relationships.

Results

For each condition, cardiac output was controlled to the nearest 0.2 L/min, and flow rate and mean arterial pressure remained stable and repeatable over a 60-s period (n = 5, standard deviation of ± 0.1 L/min and ± 0.84 mmHg, respectively). Transfer function analyses showed that the systemic-peripheral relationships could be adequately manipulated. The results from this MCL were comparable to those from other published MCLs and computational simulations. However, resolving current limitations of the system would further improve its utility. Three pulse contour analysis algorithms were applied to the pressure and flow data from the MCL to demonstrate the potential role of MCLs in characterizing hemodynamic monitoring systems.

Conclusion

Overall, the development of robust analysis methods in conjunction with modified MCLs can expand device testing applications to hemodynamic monitoring systems. Properly validated MCLs can create a stable and reproducible environment for testing patient monitoring systems over their entire operating ranges prior to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7.
Figure 8

Similar content being viewed by others

References

  1. Beurton, A., J.-L. Teboul, F. Gavelli, F. A. Gonzalez, V. Girotto, L. Galarza, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit. Care. 23(1):19, 2019.

    Article  Google Scholar 

  2. Biglino, G., A. Giardini, C. Baker, R. S. Figliola, T.-Y. Hsia, A. M. Taylor, et al. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. ASAIO J. 58(1):25–31, 2012. https://doi.org/10.1097/MAT.0b013e3182396847.

    Article  PubMed  Google Scholar 

  3. Boisson, M., M. Poignard, B. Pontier, O. Mimoz, B. Debaene, and D. Frasca. Cardiac output monitoring with thermodilution pulse-contour analysis vs. non-invasive pulse-contour analysis. Anaesthesia. 74(6):735–740, 2019.

    Article  CAS  Google Scholar 

  4. Broda, C., P. Smith, Y. Wang, O. Frazier, W. Dreyer, I. Adachi, et al. Hemodynamic improvement with application of mechanical circulatory support in heart failure with preserved ejection fraction in a mock circulation loop. J. Heart Lung Transpl. 38(4):S373, 2019.

    Article  Google Scholar 

  5. Brookshier, K. A., and J. M. Tarbell. Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology. 30(2):107–116, 1993. https://doi.org/10.3233/bir-1993-30202.

    Article  CAS  PubMed  Google Scholar 

  6. Chang, T.-I., K.-H. Hsu, C.-W. Luo, J.-H. Yen, P.-C. Lu, and C.-I. Chang. In vitro study of trileaflet polytetrafluoroethylene conduit and its valve-in-valve transformation. Interact Cardiovasc Thorac Surg. 30(3):408–416, 2020. https://doi.org/10.1093/icvts/ivz274.

    Article  PubMed  Google Scholar 

  7. Critchley, L. A., and J. A. Critchley. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 15(2):85–91, 1999.

    Article  CAS  Google Scholar 

  8. Della Rocca, G., M. G. Costa, P. Chiarandini, G. Bertossi, M. Lugano, L. Pompei, et al. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J. Cardiothorac. Vasc. Anesth. 22(5):681–687, 2008.

    Article  Google Scholar 

  9. Doshi, R., K. Patel, P. Patel, and P. M. Meraj. Trends in the utilization and in-hospital mortality associated with pulmonary artery catheter use for cardiogenic shock hospitalizations. Indian Heart J. 70(Suppl 3):S496, 2018.

    Article  Google Scholar 

  10. D'Souza, G. A., R. K. Banerjee, and M. D. Taylor. Evaluation of pulmonary artery stenosis in congenital heart disease patients using functional diagnostic parameters: an in vitro study. J Biomech. 81:58–67, 2018. https://doi.org/10.1016/j.jbiomech.2018.09.014.

    Article  PubMed  Google Scholar 

  11. Ferrari, G., C. De Lazzari, R. Mimmo, G. Tosti, D. Ambrosi, and K. Gorczynska. A computer controlled mock circulatory system for mono-and biventricular assist device testing. Int. J. Artif. Organs. 21(1):26–36, 1998.

    CAS  PubMed  Google Scholar 

  12. Figliola, R. S., A. Giardini, T. Conover, T. A. Camp, G. Biglino, J. Chiulli, et al. In vitro simulation and validation of the circulation with congenital heart defects. Prog Pediatr Cardiol. 30(1–2):71–80, 2010. https://doi.org/10.1016/j.ppedcard.2010.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gallagher, D., A. Adji, and M. F. O’Rourke. Validation of the Transfer Function Technique for Generating Central from Peripheral Upper Limb Pressure Waveform. Oxford: Oxford University Press, 2004.

    Book  Google Scholar 

  14. Gehron, J., J. Zirbes, M. Bongert, S. Schäfer, M. Fiebich, G. Krombach, et al. Development and validation of a life-sized mock circulatory loop of the human circulation for fluid-mechanical studies. Asaio J. 65(8):788–797, 2019.

    Article  Google Scholar 

  15. Glynn, J., H. Song, B. Hull, S. Withers, J. Gelow, J. Mudd, et al. The oregonheart total artificial heart: design and performance on a mock circulatory loop. Artif Organs. 41(10):904–910, 2017. https://doi.org/10.1111/aor.12959.

    Article  PubMed  Google Scholar 

  16. Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101(23):e215–e220, 2000.

    Article  CAS  Google Scholar 

  17. Gregory, S. D., J. P. Pauls, E. L. Wu, A. Stephens, U. Steinseifer, G. Tansley, et al. An advanced mock circulation loop for in vitro cardiovascular device evaluation. Artif Organs. 44(6):E238–E250, 2020. https://doi.org/10.1111/aor.13636.

    Article  PubMed  Google Scholar 

  18. Hang, T., A. Giardini, G. Biglino, T. Conover, and R. S. Figliola. In vitro validation of a multiscale patient-specific Norwood Palliation model. Asaio J. 62(3):317–324, 2016.

    Article  Google Scholar 

  19. Jiang, X., S. R. Srinivasan, E. Urbina, and G. S. Berenson. Hyperdynamic circulation and cardiovascular risk in children and adolescents: the Bogalusa Heart Study. Circulation. 91(4):1101–1106, 1995.

    Article  CAS  Google Scholar 

  20. Karamanoglu, M., M. O’rourke, A. Avolio, and R. Kelly. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur. Heart J. 14(2):160–167, 1993.

    Article  CAS  Google Scholar 

  21. Kim, S., J. Lee, W. Kim, J. Sun, M. Kwon, and H. Kil. Evaluation of radial and ulnar blood flow after radial artery cannulation with 20-and 22-gauge cannulae using duplex Doppler ultrasound. Anaesthesia. 67(10):1138–1145, 2012.

    Article  CAS  Google Scholar 

  22. Koenig, S. C., G. M. Pantalos, K. J. Gillars, D. L. Ewert, K. N. Litwak, and S. W. Etoch. Hemodynamic and pressure–volume responses to continuous and pulsatile ventricular assist in an adult mock circulation. ASAIO J. 50(1):15–24, 2004.

    Article  Google Scholar 

  23. Kroeker, E. J., and E. H. Wood. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ. Res. 3(6):623–632, 1955.

    Article  CAS  Google Scholar 

  24. Kung, E., M. Farahmand, and A. Gupta. A hybrid experimental-computational modeling framework for cardiovascular device testing. J. Biomech. Eng. 141(5):051012, 2019.

    Article  Google Scholar 

  25. Masengu, A., J. McDaid, A. P. Maxwell, and J. B. Hanko. Preoperative radial artery volume flow is predictive of arteriovenous fistula outcomes. J. Vasc. Surg. 63(2):429–435, 2016.

    Article  Google Scholar 

  26. Meess, K., R. Izzo, M. Dryjski, R. Curl, L. Harris, M. Springer, et al. 3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning with a Patient Specific Fenestrated Endovascular Graft System. SPIE Medical Imaging: SPIE, 2017.

    Google Scholar 

  27. Pantalos, G. M., S. C. Koenig, K. J. Gillars, G. A. Giridharan, and D. L. Ewert. Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J. 50(1):37–46, 2004. https://doi.org/10.1097/01.mat.0000104818.70726.e6.

    Article  PubMed  Google Scholar 

  28. Persona, P., E. Saraceni, F. Facchin, E. Petranzan, M. Parotto, F. Baratto, et al. Pulse contour analysis of arterial waveform in a high fidelity human patient simulator. J. Clin. Monitor. Comput. 32(4):677–681, 2018.

    Article  Google Scholar 

  29. Petrou, A., M. Granegger, M. Meboldt, and Daners M. Schmid. A versatile hybrid mock circulation for hydraulic investigations of active and passive cardiovascular implants. ASAIO J. 65(5):495–502, 2019. https://doi.org/10.1097/mat.0000000000000851.

    Article  CAS  PubMed  Google Scholar 

  30. Ramsingh, D., B. Alexander, and M. Cannesson. Clinical review: does it matter which hemodynamic monitoring system is used? Crit. Care. 17(2):208, 2013.

    Article  Google Scholar 

  31. Robin, E., M. Costecalde, G. Lebuffe, and B. Vallet. Clinical relevance of data from the pulmonary artery catheter. Crit. Care. 10(3):1–10, 2006.

    Google Scholar 

  32. Rzheutskaya, R.E. Characteristics of hemodynamic disorders in patients with severe traumatic brain injury. Crit Care Res Pract. 2012;2012:606179. https://doi.org/10.1155/2012/606179

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shehab, S., S. M. Allida, P. J. Newton, D. Robson, P. S. Macdonald, P. M. Davidson, et al. Valvular regurgitation in a biventricular mock circulatory loop. Asaio J. 65(6):551–557, 2019.

    Article  Google Scholar 

  34. Sun, J. X., A. T. Reisner, M. Saeed, T. Heldt, and R. G. Mark. The cardiac output from blood pressure algorithms trial. Crit Care Med. 37(1):72–80, 2009. https://doi.org/10.1097/CCM.0b013e3181930174.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun, J, A. Reisner, M. Saeed, and R. Mark. Estimating cardiac output from arterial blood pressure waveforms: a critical evaluation using the MIMIC II database. Comput. Cardiol. 295–298, IEEE, 2005. https://doi.org/10.1109/CIC.2005.1588095

  36. Teboul, J.-L., M. Cecconi, and T. W. Scheeren. Is there still a place for the Swan-Ganz catheter? New York: Springer, 2018.

    Book  Google Scholar 

  37. Trusty, P. M., M. Tree, D. Vincent, J. P. Naber, K. Maher, A. P. Yoganathan, et al. In vitro examination of the VentriFlo true pulse pump for failing Fontan support. Artif Organs. 43(2):181–188, 2019. https://doi.org/10.1111/aor.13301.

    Article  PubMed  Google Scholar 

  38. Vahdatpour, C., D. Collins, and S. Goldberg. Cardiogenic shock. J. Am. Heart Assoc.8(8):e011991, 2019. https://doi.org/10.1161/JAHA.119.011991.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Villanueva, C., A. Albillos, J. Genescà, J. G. Abraldes, J. L. Calleja, C. Aracil, et al. Development of hyperdynamic circulation and response to β-blockers in compensated cirrhosis with portal hypertension. Hepatology. 63(1):197–206, 2016.

    Article  CAS  Google Scholar 

  40. Vincent, J.-L., A. Rhodes, A. Perel, G. S. Martin, G. Della Rocca, B. Vallet, et al. Clinical review: update on hemodynamic monitoring-a consensus of 16. Crit. Care. 15(4):1–8, 2011.

    Article  Google Scholar 

  41. Wu, C., S. M. Retta, R. A. Robinson, B. A. Herman, and L. W. Grossman. A novel study of mechanical heart valve cavitation in a pressurized pulsatile duplicator. ASAIO J. 55(5):445–451, 2009. https://doi.org/10.1097/MAT.0b013e3181b4c44f.

    Article  PubMed  Google Scholar 

  42. Yang, T.-H., J. U. Kim, Y.-M. Kim, J.-H. Koo, and S.-Y. Woo. A new blood pulsation simulator platform incorporating cardiovascular physiology for evaluating radial pulse waveform. J. Healthc. Eng. 2019;2019:4938063. https://doi.org/10.1155/2019/4938063

  43. Young, E., J.-F. Chen, O. Dong, S. Gao, A. Massiello, and K. Fukamachi. Transcatheter heart valve with variable geometric configuration. Vitro Evaluat. Artif Organs. 35(12):1151–1159, 2011. https://doi.org/10.1111/j.1525-1594.2011.01331.x.

    Article  Google Scholar 

  44. Zhang, Z., B. Lu, X. Sheng, and N. Jin. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J. Anesth. 25(6):904–916, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Sungtae Shin for his work in developing the in-house software for controlling the MCL.

Disclaimer

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. This article reflects the research conducted by the authors and should not be construed to represent FDA’s views, guidance, or policies.

Funding

This project was supported by CDRH Critical Path Initiative funding and in part by an appointment to the Research Participation Program at the Center for Devices and Radiological Health, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Scully.

Ethics declarations

Conflict of interest

Anna Packy, Gavin D’Souza, Masoud Farahmand, Luke Herbertson, and Christopher Scully declare that they have no conflict of interest.

Data Availability

Electronic data reported in this study will be made available upon request.

Code Availability

Code used in this study will be made available upon request.

Additional information

Associate Editor Igor Efimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Packy, A., D’Souza, G.A., Farahmand, M. et al. Simulating Radial Pressure Waveforms with a Mock Circulatory Flow Loop to Characterize Hemodynamic Monitoring Systems. Cardiovasc Eng Tech 13, 279–290 (2022). https://doi.org/10.1007/s13239-021-00575-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00575-2

Keywords

Navigation