Skip to main content
Log in

The Effect of Thermal Treatment on the Thermoelectric Figure of Merit of Silicon Doped Using Nuclear Transmutation

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

This work is devoted to the thermal treatment effect peculiarities on the electric and thermoelectric characteristics of silicon crystals doped with a phosphorus impurity using nuclear transmutation and (for comparison) common metallurgical methods. It was found that, to obtain optimal values of the thermoelectric figure of merit Za in n-Si crystals doped by the method of the nuclear transmutation, they must be annealed at 1100–1200°С for 2 h, whereas the annealing of the same duration, but at lower temperatures, has to be used for ordinary n-Si crystals. In both cases, higher values of the thermoelectric figure of merit were obtained at cooling the crystals from the annealing temperature to room temperature at a rate of 1°С/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Li, J.-F., Tanaka, S., Umeki, T., Sugimoto, S., et al., Microfabrication of thermoelectric materials by silicon molding process, Sens. Actuators, A, 2003, vol. 108, nos. 1–3, p. 97. https://doi.org/10.1016/S0924-4247(03)00369-8

    Article  Google Scholar 

  2. Anatychuk, L.I. and Vikhor, L.N., Termoelektrichestvo. Tom 4. Funktsional’no-gradientnye termoelektricheskie materialy (Thermoelectricity, Vol. 4: Functional-Gradient Thermoelectric Materials), Kyiv-Chernovtsi: Inst. Termoelektr., Nats. Akad. Nauk Ukr., 2012.

  3. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., et al., New directions for low-dimensional thermoelectric materials, Adv. Mater., 2007, vol. 19, no. 8, p. 1043. https://doi.org/10.1002/adma.200600527

    Article  Google Scholar 

  4. Anatychuk, L.I., Termoelektrichestvo. Tom 2. Termoelektricheskie preobrazovateli energii (Thermoelectricity, Vol. 2: Thermoelectric Energy Converters), Kyiv-Chernovtsi: Inst. Termoelektr., Nats. Akad. Nauk Ukr., 2003.

  5. Ioffe, A.F., Semiconductor Thermoelements and Thermoelectric Cooling, London: Infosearch, 1957.

    Google Scholar 

  6. Martin, J., Nolas, G.S., Zhang, W., and Chen, L., PbTe nanocomposites synthesized from PbTe nanocrystals, Appl. Phys. Lett., 2007, vol. 90, no. 22, art. ID 222112. https://doi.org/10.1063/1.2745218

    Article  Google Scholar 

  7. Zhu, T.J., Liu, Y.Q., and Zhao, X.B., Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes, Mater. Res. Bull., 2008, vol. 43, no. 11, p. 2850. https://doi.org/10.1016/j.materresbull.2008.01.001

    Article  Google Scholar 

  8. Ohta, H., Thermoelectrics based on strontium titanate, Mater. Today, 2007, vol. 10, no. 10, p. 44. https://doi.org/10.1016/S1369-7021(07)70244-4

  9. Tritt, T.M. and Subramanian, M.A., Thermoelectric materials, phenomena, and applications: A bird’s eye view, MRS Bull., 2006, vol. 31, no. 3, p. 188. https://doi.org/10.1557/mrs2006.44

    Article  Google Scholar 

  10. Brandt, N.B. and Kulbachinskii, V.A., Pressure spectroscopy of impurity states and band structure of bismuth telluride, Semicond. Sci. Technol., 1992, vol. 7, no. 7, p. 907. https://doi.org/10.1088/0268-1242/7/7/006

    Article  Google Scholar 

  11. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 2008, vol. 321, no. 5888, p. 554. https://doi.org/10.1126/science.1159725

    Article  Google Scholar 

  12. Kim, D.-H. and Mitani, T., Thermoelectric properties of fine-grained Bi2Te3 alloys, J. Alloys Compd., 2005, vol. 399, nos. 1–2, p. 14. https://doi.org/10.1016/j.jallcom.2005.03.021

    Article  Google Scholar 

  13. Toprak, M.S., Stiewe, C., Platzek, D., Williams, S., et al., The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3, Adv. Funct. Mater., 2004, vol. 14, no. 12, p. 1189. https://doi.org/10.1002/adfm.200400109

    Article  Google Scholar 

  14. Stiewe, C., Bertini, L., Toprak, M., Christensen, M., et al., Nanostructured Co1 – xNix(Sb1 – yTey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties, J. Appl. Phys., 2005, vol. 97, no. 4, art. ID 044317. https://doi.org/10.1063/1.1852072

    Article  Google Scholar 

  15. Baranskii, P.I., Buda, I.S., and Dakhovskii, I.V., Teoriya termoelektricheskikh i termomagnitnykh yavlenii v anizotropnykh poluprovodnikakh (Theory of Thermoelectric and Thermomagnetic Phenomena in Anisotropic Semiconductors), Kiev: Naukova Dumka, 1987.

  16. Gaidar, G.P., Mechanisms of the anisotropy formation of thermoelectric and thermomagnetic phenomena in the multivalley semiconductors, Fiz. Khim. Tverd. Tila, 2013, vol. 14, no. 1, p. 7.

    Google Scholar 

  17. Anatychuk, L.I., Termoelementy i termoelektricheskie ustroistva. Spravochnik (Thermoelements and Thermoelectric Devices: Handbook), Kiev: Naukova Dumka, 1979.

  18. Capper, P., Jones, A.W., Wallhouse, E.J., and Wilkes, J.G., The effects of heat treatment on dislocation-free oxygen-containing silicon crystals, J. Appl. Phys., 1977, vol. 48, no. 4, p. 1646. https://doi.org/10.1063/1.323847

    Article  Google Scholar 

  19. Gaidar, G.P. and Baranskii, P.I., Thermoelectric properties of transmutation doped silicon crystals, Phys. B (Amsterdam), 2014, vol. 441, p. 80. https://doi.org/10.1016/j.physb.2014.02.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Gaidar.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidar, G.P. The Effect of Thermal Treatment on the Thermoelectric Figure of Merit of Silicon Doped Using Nuclear Transmutation. Surf. Engin. Appl.Electrochem. 57, 425–430 (2021). https://doi.org/10.3103/S1068375521040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521040037

Keywords:

Navigation