Skip to main content
Log in

Determination of Vitamin C at Modified Screen Printed Electrode: Application for Sensing of Vitamin C in Real Samples

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, ZnFe2O4 magnetic nanoparticles were used to modify a screen printed electrode. The modified electrode decreased the over-potential of vitamin C (70 mV) and prominently increased its oxidation peak current (3.3%). Under optimum conditions, the electrode provided a linear response based on the vitamin C concentrations between 0.5–500.0 μM, with a detection limit of 0.15 µM, by using the differential pulse voltammetric method. The modified electrode exhibited excellent electrochemical performance, including a good linear range and a micromolar detection limit, high sensitivity, and desirable stability and repeatability. Particularly, the practical applicability was revealed by quantifying the vitamin C concentrations in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kumar, N. and Goyal, R.N., Palladium nano particles decorated multi-walled carbon nanotubes modified sensor for the determination of 5-hydroxytryptophan in biological fluids, Sens. Actuators, B, 2017, vol. 239, p. 1060.

    Article  Google Scholar 

  2. Payehghadr, M., Adineh Salarvand, S., Nourifard, F., Rofouei, M.K., et al., Construction of modified carbon paste electrode by a new pantazene ligand for ultra-trace determination of ion silver in real samples, Adv. J. Chem., Sect. A, 2019, vol. 2, p. 377.

    Google Scholar 

  3. Portaccio, M., Di Tuoro, D., Arduini, F., Moscone, D., et al., Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection, Electrochim. Acta, 2013, vol. 109, p. 340.

    Article  Google Scholar 

  4. Motaghi, M.M., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis, Int. J. Electrochem. Sci., 2016, vol. 11, p. 7849.

    Article  Google Scholar 

  5. Soltani, N., Tavakkoli, N., Mosavimanesh, Z.S., and Davar, F., Electrochemical determination of naproxen in the presence of acetaminophen using a carbon paste electrode modified with activated carbon nanoparticles, C. R. Chim., 2018, vol. 21, p. 54.

    Article  Google Scholar 

  6. Malhotra, S., Tang, Y., and Varshney, P.K., Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 699.

    Google Scholar 

  7. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2‑(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  Google Scholar 

  8. Shumyantseva, V., Bulko, T., Kuzikov, A., Masamrekh, R., et al., Analysis of l-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2), Amino Acids, 2018, vol. 50, p. 823.

    Article  Google Scholar 

  9. Tajik, S., Taher, M.A., Beitollahi, H., and Torkzadeh-Mahani, M., Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor, Talanta, 2015, vol. 134, p. 60.

    Article  Google Scholar 

  10. Harraz, F.A., Faisal, M., Ismail, A.A., Al-Sayari, S.A., Al-Salami, A.E., et al., TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor, J. Electroanal. Chem., 2019, vol. 832, p. 225.

    Article  Google Scholar 

  11. Moghaddam, H.M., Beitollahi, H., Tajik, S., Malakootian, M., et al., Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor, Environ. Monit. Assess., 2014, vol. 186, p. 7431.

    Article  Google Scholar 

  12. Zhai, H., Wang, H., Wang, S., Chen, Z., et al., Electrochemical determination of mangiferin and icariin based on Au-AgNPs/MWNTs-SGSs modified glassy carbon electrode, Sens. Actuators, B, 2018, vol. 255, p. 1771.

    Article  Google Scholar 

  13. Tashkhourian, J., Nami-Ana, S.F., and Shamsipur, M., Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine, J. Mol. Liq., 2018, vol. 266, p. 548.

    Article  Google Scholar 

  14. Baghbamidi, S.E., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.

    Article  Google Scholar 

  15. Jirasirichote, A., Punrat, E., Suea-Ngam, A., Chailapakul, O., et al., Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide, Talanta, 2017, vol. 175, p. 331.

    Article  Google Scholar 

  16. Komariah, A., Tatara, R.A., and Bustami, D.A., Efficacy of rhinoceros beetle (Xylotrupes gideon) nano chitosan and calcium mouthwash in reducing quantity oral cavity bacteria among elementary school age children, Int. J. Adv. Biol. Biomed. Res., 2017, vol. 5, p. 41.

    Google Scholar 

  17. Wei, Z., Sun, Y., Yin, Q., Wang, L., et al., Electrochemical determination of tyrosine in human serum based on glycine polymer and multi-walled carbon nanotubes modified carbon paste electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 7478.

    Article  Google Scholar 

  18. Yang, C., Yu, S., Yang, Q., Wang, Q., et al., Graphene supported platinum nanoparticles modified electrode and its enzymatic biosensing for lactic acid, J. Electrochem. Soc., 2018, vol. 165, p. B665.

    Article  Google Scholar 

  19. Beitollahi, H., Hamzavi, M., Torkzadeh-Mahani, M., Shanesaz, M., et al., A novel strategy for simultaneous determination of dopamine and uric acid using a carbon paste electrode modified with CdTe quantum dots, Electroanalysis, 2015, vol. 27, p. 524.

    Article  Google Scholar 

  20. Bhanjana, G., Mehta, N., Chaudhary, G.R., Dilbaghi, N., et al., Novel electrochemical sensing of arsenic ions using a simple graphite pencil electrode modified with tin oxide nanoneedles, J. Mol. Liq., 2018, vol. 264, p. 198.

    Article  Google Scholar 

  21. Wang, Y., Qian, J., Chen, Z., Wang, C., et al., CeO2 quantum dots modified electrode for detecting hydrogen peroxide, Inorg. Chem. Commun., 2019, vol. 101, p. 62.

    Article  Google Scholar 

  22. Thacker, H., Ram, V., and Dave, P.N., Plant mediated synthesis of iron nanoparticles and their applications: A review, Prog. Chem. Biochem. Res., 2019, vol. 2, p. 84.

    Article  Google Scholar 

  23. Taherkhani, A., Jamali, T., Hadadzadeh, H., Karimi-Maleh, H., et al., ZnO nanoparticle-modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples, Ionics, 2014, vol. 20, p. 421.

    Article  Google Scholar 

  24. Li, Z., Yue, Y., Hao, Y., Feng, S., et al., A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol, Microchim. Acta, 2018, vol. 185, p. 215.

    Article  Google Scholar 

  25. Jiang, X.L., Li, R., Li, J., and He, X., Electrochemical behavior and analytical determination of folic acid on carbon nanotube modified electrode, Russ. J. Electrochem., 2009, vol. 45, p. 772.

    Article  Google Scholar 

  26. Nikam, A., Pagar, T., Ghotekar, S., Pagar, K., et al., A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications, J. Chem. Rev., 2019, vol. 1, p. 154.

    Article  Google Scholar 

  27. Ning, J., He, Q., Luo, X., Wang, M., et al., Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film, Sensors, 2018, vol. 18, p. 2762.

    Article  Google Scholar 

  28. Beitollahi, H., Tajik, S., Asadi, M.H., and Biparva, P., Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation, J. Anal. Sci. Technol., 2014, vol. 5, p. 29.

    Article  Google Scholar 

  29. Dehno Khalaji, A., Ghorbani, M., Dusek, M., and Eigner, V., The bis(4-methoxy-2-hydroxybenzophenone) copper(II) complex used as a new precursor for preparation of CuO nanoparticles, Chem. Methodol., 2020, vol. 4, p. 143.

    Article  Google Scholar 

  30. Hou, X., Shen, G., Meng, L., Zhu, L., and Guo, M., Multi-walled carbon nanotubes modified glass carbon electrode and its electrocatalytic activity towards oxidation of paracetamol, Russ. J. Electrochem., 2011, vol. 47, p. 1262.

    Article  Google Scholar 

  31. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., et al., Application of 2-(3, 4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid, Analyst, 2011, vol. 136, p. 1965.

    Article  Google Scholar 

  32. Zheng, S., Huang, R., Ma, X., Tang, J., et al., A highly sensitive dopamine sensor based on graphene quantum dots modified glassy carbon electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 5723.

    Article  Google Scholar 

  33. Xu, M., Ma, M., and Ma, Y., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.

    Article  Google Scholar 

  34. Ghoreishi, S.M. and Malekian, M., Curve resolution on overlapped voltammograms for simultaneous determination of tryptophan and tyrosine at carbon paste electrode modified with ZnFe2O4 nanoparticles, J. Electroanal. Chem., 2017, vol. 805, p. 1.

    Article  Google Scholar 

  35. Shahnavaz, Z., Lorestani, F., Alias, Y., and Woi, P.M., Polypyrrole-ZnFe2O4 magnetic nano-composite with core-shell structure for glucose sensing, Appl. Surf. Sci., 2014, vol. 317, p. 622.

    Article  Google Scholar 

  36. Shiri, S., Pajouheshpoor, N., Khoshsafar, H., Amidi, S., et al., An electrochemical sensor for the simultaneous determination of rifampicin and isoniazid using a C-dots CuFe2O4 nanocomposite modified carbon paste electrode, New J. Chem., 2017, vol. 41, p. 15564.

    Article  Google Scholar 

  37. Mohammadi, B. and Salmani, L., Synthesis of 3-amino-5-methyl-[1,1'-biaryl]-2,4-dicarbonitriles using ZnFe2O4 magnetic nanoparticles, Asian J. Green Chem., 2018, vol. 2, p. 51.

    Article  Google Scholar 

  38. Zhang, Y., Zhou, E., Li, Y., and He, X., A novel nonenzymatic glucose sensor based on magnetic copper ferrite immobilized on multiwalled carbon nanotubes, Anal. Methods, 2015, vol. 2, p. 2360.

    Article  Google Scholar 

  39. Gharbani, P. and Mehalizadeh, A., Facile preparation of novel zinc oxide nano sheets and study of its optical properties, Asian J. Nanosci. Mater., 2019, vol. 2, p. 27.

    Google Scholar 

  40. Shojaei, A.F., Tabatabaeian, K., Shakeri, S., and Karimi, F., A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4 magnetic nanoparticles ionic liquids carbon paste electrode, Sens. Actuators, B, 2016, vol. 230, p. 607.

    Article  Google Scholar 

  41. Yu, D., Zou, D., Li, D., Wang, X., et al., Detection of phosphatidylcholine content in crude oil with bio-enzyme screen-printed electrode, Food Anal. Methods, 2019, vol. 12, p. 229.

    Article  Google Scholar 

  42. Ganjali, M.R., Dourandish, Z., Beitollahi, H., Tajik, S., et al., Highly sensitive determination of theophylline based on graphene quantum dots modified electrode, Int. J. Electrochem. Sci., 2018, vol. 13, p. 2448.

    Article  Google Scholar 

  43. Gonzalez-Sanchez, M.I., Gomez-Monedero, B., Agrisuelas, J., Iniesta, J., et al., Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing, J. Electroanal. Chem., 2019, vol. 839, p. 75.

    Article  Google Scholar 

  44. Gevaerd, A., Banks, C.E., Bergamini, M.F., and Marcolino-Junior, L.H., Graphene quantum dots modified screen-printed electrodes as electro-analytical sensing platform for diethylstilbestrol, Electroanalysis, 2019, vol. 31, p. 838.

    Article  Google Scholar 

  45. Muhammad, A., Hajian, R., Yusof, N.A., Shams, N., et al., A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk, RSC Adv., 2018, vol. 8, p. 2714.

    Article  Google Scholar 

  46. Manoj, D., Rajendran, S., Qin, J., Sundaravadivel, E., et al., Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets, J. Colloid Interface Sci., 2019, vol. 542, p. 45.

    Article  Google Scholar 

  47. Liu, S., Jiang, X., and Yang, M., Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film, Microchim. Acta, 2019, vol. 186, p. 445.

    Article  Google Scholar 

  48. Jadav, J.K., Umrania, V.V., Rathod, K.J., and Golakiya, B.A., Development of silver/carbon screen-printed electrode for rapid determination of vitamin C from fruit juices, LWT–Food Sci. Technol., 2018, vol. 88, p. 152.

    Article  Google Scholar 

  49. Gheibi, S., Karimi-Maleh, H., Khalilzadeh, M.A., and Bagheri, H., A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode, J. Food Sci. Technol., 2015, vol. 52, p. 276.

    Article  Google Scholar 

  50. He, B.S. and Zhang, J.X., Electrochemical determination of vitamin C on glassy carbon electrode modified by carboxyl multi-walled carbon nanotubes, Int. J. Electrochem. Sci., 2015, vol. 10, p. 9621.

    Google Scholar 

  51. Klimczak, I. and Gliszczynska-Swiglo, A., Comparison of UPLC and HPLC methods for determination of vitamin C, Food Chem., 2015, vol. 175, p. 100.

    Article  Google Scholar 

  52. Pourmorad, F., Honary, S., Enayatifard, R., and Shahrbandi, S., Comparison between polarography and titrimetry methods for determination of ascorbic acid in pharmaceutical dosage forms, Boll. Chim. Farm., 2003, vol. 142, p. 295.

    Google Scholar 

  53. Hassan, R.O. and Faizullah, A.T., Reverse-FIA with spectrophotometric detection method for determination of vitamin C, J. Iran. Chem. Soc., 2011, vol. 8, p. 662.

    Article  Google Scholar 

  54. Maki, T., Soh, N., Nakano, K., and Imato, T., Flow injection fluorometric determination of ascorbic acid using perylenebisimide-linked nitroxide, Talanta, 2011, vol. 85, p. 1730.

    Article  Google Scholar 

  55. Thangamuthu, R., Kumar, S.S., and Pillai, K.C., Direct amperometric determination of l-ascorbic acid (vitamin C) at octacyanomolybdate-doped-poly (4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals, Sens. Actuators, B, 2007, vol. 120, p. 745.

    Article  Google Scholar 

  56. Khalilzadeh, M.A. and Borzoo, M., Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid, J. Food Drug Anal., 2016, vol. 24, p. 796.

    Article  Google Scholar 

  57. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York, Wiley, 2001, 2nd ed. ISBN 978-0-471-04372-0.

    Google Scholar 

  58. Mukdasaia, S., Crowley, U., Pravda, M., Hec, X., et al., Electrodeposition of palladium nanoparticles on porous graphitized carbon monolith modified carbon paste electrode for simultaneous enhanced determination of ascorbic acid and uric acid, Sens. Actuators, B, 2015, vol. 218, p. 280.

    Article  Google Scholar 

  59. Wang, C., Yuan, R., Chai, Y., Chen, S., et al., Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode, Anal. Chim. Acta, 2012, vol. 741, p. 15.

    Article  Google Scholar 

  60. Beitollahi, H., Mazloum-Ardakani, M., Naeimi, H., and Ganjipour, B., Electrochemical characterization of 2,2'-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone-carbon nanotube paste electrode and its application to simultaneous voltammetric determination of ascorbic acid and uric acid, J. Solid State Electrochem., 2009, vol. 13, p. 353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Sarhadi.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemeh Shayanfar, Hamid Sarhadi Determination of Vitamin C at Modified Screen Printed Electrode: Application for Sensing of Vitamin C in Real Samples. Surf. Engin. Appl.Electrochem. 57, 487–494 (2021). https://doi.org/10.3103/S1068375521040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521040141

Keywords:

Navigation