Skip to main content
Log in

Electrochemical Polymerization of Diphenylamine-2-Carboxylic Acid on Glassy Carbon and Activated Graphite Foil

  • FUNCTIONAL POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The electrochemical polymerization of diphenylamine-2-carboxylic acid in an alkaline electrolyte on an anodized graphite foil is compared with the corresponding electrochemical polymerization on a glassy carbon substrate. The physicochemical properties and electrochemical characteristics of electroactive polymer coatings (polydiphenylamine-2-carboxylic acid) in 1 М H2SO4 solution in the potential range from –1 to +1 V are investigated. It is shown that two different polymers are formed on the used substrates. According to the electrochemical, electron microscopy, and X-ray photoelectron spectroscopy data, the possible pathway of electropolymerization on surfaces of the anodized graphite foil and glassy carbon is proposed. The calculated values of the electrochemical capacity, Coulomb efficiency, and stability of polymer coatings based on poly(diphenylamine-2-dicarboxylic acid) on the anodized graphite foil substrate in multiple cycle experiments are found to be good for designing electrodes for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. F. Shen, D. Pankratov, and Q. Chi, Curr. Opin. Electrochem. 4, 133 (2017).

    Article  CAS  Google Scholar 

  2. A. González, E. Goikole, J. A. Barren, and R. Mysyk, Renewable Sustainable Energy Rev. 58, 1189 (2016).

    Article  Google Scholar 

  3. H. Shao, Y.-Ch. Wu, Z. Lin, P.-Lm. Tabernand, and P. Simon, Chem. Soc. Rev. 49, 3005 (2020).

    Article  CAS  Google Scholar 

  4. V. S. S. Vadali, G. V. Ramana, and P. S. Kumar, J. Nanosci. Nanotechnol. 16, 2418 (2016).

    Article  Google Scholar 

  5. B. C. Kim, J. Y. Hong, G. G. Wallace, and H. S. Park, Adv. Energy Mater. 5, 1500959 (2015).

    Article  Google Scholar 

  6. J. Zhang and X. S. Zhao, ChemSusChem 5, 818 (2012).

    Article  CAS  Google Scholar 

  7. S. Gupta and C. Price, Composites, Part B 105, 46 (2016).

    Article  CAS  Google Scholar 

  8. M. Wang and Y. X. Xu, Chin. Chem. Lett. 27, 1437 (2016).

    Article  CAS  Google Scholar 

  9. V. V. Abalyaeva, G. V. Nikolaeva, E. N. Kabachkov, S. G. Kiseleva, A. V. Orlov, O. N. Efimov, and G. P. Karpacheva, Polym. Sci., Ser. B 60, 777 (2018).

    Article  Google Scholar 

  10. V. V. Abalyaeva, G. V. Nikolaeva, E. N. Kabachkov, and O. N. Efimov, Prot. Met. Phys. Chem. Surf. 56, 493 (2020).

    Article  CAS  Google Scholar 

  11. V. V. Abalyaeva, M. N. Efimov, O. N. Efimov, G. P. Karpacheva, N. N. Dremova, E. N. Kabachkov, and D. G. Muratov, Electrochim. Acta 354, 136671 (2020).

    Article  CAS  Google Scholar 

  12. S. Zh. Ozkan, I. S. Eremeev, G. P. Karpacheva, and G. N. Bondarenko, Open J. Polym. Chem. 3, 63 (2013).

    CAS  Google Scholar 

  13. S. Z. Ozkan, I. S. Eremeev, G. P. Karpacheva, T. N. Prudskova, E. V. Veselova, G. N. Bondarenko, and G. A. Shandryuk, Polym. Sci., Ser. B 55, 107 (2013).

    Article  CAS  Google Scholar 

  14. S. Zh. Ozkan, A. I. Kostev, G. P. Karpacheva, P. A. Chernavskii, A. A. Vasilev, and D. G. Muratov, Polymers 12, 1568 (2020).

    Article  CAS  Google Scholar 

  15. H. R. Nassa, A. Souri, A. Javadian, and M. K. Aminia, Sens. Actuators, B 215, 360 (2015).

    Article  Google Scholar 

  16. V. V. Abalyaeva, G. V. Nikolaeva, N. N. Dremova, E. I. Knerel’man, G. I. Davydova, O. N. Efimov, and S. G. Ionov, Prot. Met. Phys. Chem. Surf. 55, 321 (2019).

    Article  CAS  Google Scholar 

  17. H. Yang and A. J. Bard, J. Electroanal. Chem. Interfacial Electrochem. 306, 87 (1991).

    Article  CAS  Google Scholar 

  18. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, J. Chem. Educ. 95, 197 (2018).

    Article  CAS  Google Scholar 

  19. V. V. Abalyaeva, G. V. Nikolaeva, E. N. Kabachkov, and O. N. Efimov, Russ. J. Electrochem. 55, 745 (2019).

    Article  CAS  Google Scholar 

  20. Sh. Rodrigues, N. A. Munichadrain, and K. Shukla, J. Appl. Electrochem. 28, 1235 (1998).

    Article  CAS  Google Scholar 

  21. H. J. Salavagione, G. Martinez, and G. Ellis, Macromol. Rapid Commun. 32, 1771 (2011).

    Article  CAS  Google Scholar 

  22. R. V. Salvatierra, G. Zitzer, S.-A. Savu, A. P. Alves, A. J. G. Zarbin, T. Chassé, M. B. Casu, and M. L. M. Rocco, Synth. Met. 203, 16 (2015).

    Article  CAS  Google Scholar 

  23. V. V. Abalyaeva, N. N. Dremova, E. N. Kabachkov, and O. N. Efimov, Prot. Met. Phys. Chem. Surf. 56, 944 (2020).

    Article  Google Scholar 

  24. K. G. Neoh, E. T. Kang, and K. L. Tan, J. Phys. Chem. 96, 6777 (1992).

    Article  CAS  Google Scholar 

  25. Z. Yanchun, Ch. M. Miao, and X. Chen, Mater. Chem. Phys. 91, 518 (2005).

    Article  Google Scholar 

  26. T. Lee, T. Yun, B. Park, Bh. Sharma, H.-K. Song, and B.-S. Kim, J. Mater. Chem. 22, 21092 (2012).

    Article  CAS  Google Scholar 

  27. M. Kim, Ch. Lee, and J. Jang, Adv. Funct. Mater. 24, 2489 (2014).

    Article  CAS  Google Scholar 

  28. A. Moyseowicz and G. Gryglewicz, Composites, Part B 159, 4 (2019).

    Article  CAS  Google Scholar 

  29. D. Shin, H. G. Kim, H. Ahn, H. Jeong, Y.-J. Kim, D. Odkhnuu, N. Tsogbadrakh, H.-B.-R. Lee, and B. Kim, RSC Adv. 7, 13979 (2017).

  30. L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, J. Samuel, and W. Wlodarsk, J. Phys. Chem. C 114, 16168 (2010).

    Article  CAS  Google Scholar 

  31. M. Trchova and J. Stejskal, Pure Appl. Chem. 83, 1803 (2011).

    Article  CAS  Google Scholar 

  32. Y. Wang, H. Li, and Y. Xia, Adv. Mater. 18, 2619 (2006).

    Article  CAS  Google Scholar 

  33. A. Janošević, G. Ćirić-Marjanović, B. Marjanović, P. Holler, M. Trchová, and J. Stejskal, Nanotecnology 19, 135606 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the Analytical Shared Research Center of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, and the Chernogolovka Scientific Center, Russian Academy of Sciences.

Funding

This work was carried out in accordance with State Assignment for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (АААА-А19-119071190044-3 and ААА-А19-119061890019-5), and State Assignment for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Abalyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalyaeva, V.V., Dremova, N.N., Kabachkov, E.N. et al. Electrochemical Polymerization of Diphenylamine-2-Carboxylic Acid on Glassy Carbon and Activated Graphite Foil. Polym. Sci. Ser. B 63, 392–403 (2021). https://doi.org/10.1134/S1560090421040011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421040011

Navigation