Skip to main content
Log in

Fabrication of Schottky Diodes Based on Cu Electrode and Polyaniline Cadmium Oxide (PANI/CdO) Composites

  • COMPOSITES
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

In situ chemical polymerization technique was used to synthesize polyaniline (PANI) and polyaniline сadmium oxide (PANI/CdO) composites with different weight percentage of CdO dopant. Structure and morphology of pure and synthesized nanocomposites were characterized by XRD and SEM techniques. Different weight percentage of CdO dopant was used to verify their effects on these characteristics. The XRD results represent better crystallinity and show more intense peaks of PANI/CdO composites with addition of CdO nano particles. The SEM investigations of PANI/CdO сomposites show well intercalary, agglomerated platelet as well as flaky structure. Current density−voltage (JV) characteristics of ITO/PANI/Cu, ITO/PANI-CdO composites/Cu fabricated Schottky diodes were investigated at room and some elevated temperatures in the potential window ±20 V. The junction parameters such as saturation current density, ideality factor and barrier height were calculated and found to be influenced by the doping concentration of CdO as well as temperature variation. The electrical behavior of PANI with CdO was found to be in good agreement with the thermionic emission model for the Schottky barrier type devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A.Hajibadali, M. Baghaei Nejad and G. Farzi, Braz. J. Phys. 45, 394 (2015).

    Article  CAS  Google Scholar 

  2. A. M. Farag, A. Ashery, and M. Abdel Rafea, Synth. Met. 160, 156 (2010).

    Article  CAS  Google Scholar 

  3. A. A. Khan and L. Paquiza, Synth. Met. 161, 899 (2011).

    Article  CAS  Google Scholar 

  4. A. Budkowski, A. Bernasik, E. Moons, M. Lekka, J. Zemla, J. Jaczewska, J. Haberko, J. Raczkowska, J. Rysz, and K. Awsiuk, Acta Phys. Pol., A 115, 435 (2009).

    Article  CAS  Google Scholar 

  5. Conjugate Polymers, Ed. by J. L. Bredas and R. Silbey (Kluwer Acad., London, 1991).

    Google Scholar 

  6. R. Gupta, S. C. K. Misra, B. D. Malhotra, N. N. Beladakere, and S. Chandra, Appl. Phys. Lett. 58, 51 (1991).

    Article  CAS  Google Scholar 

  7. J. Unsworth, B. A. Lunn, P. C. Innis, Z. Jin, A. Kaynak, and N. G. Booth, J. Intell. Mater. Syst. Struct. 3, 380 (1992).

    Article  Google Scholar 

  8. V. C. Nguyen and K. Potje-Kamloth, Thin Solid Films 338, 142 (1999).

    Article  CAS  Google Scholar 

  9. R. K. Gupta and R. A. Singh, Mater. Sci. Semicond. Process. 7, 83 (2004).

    Article  CAS  Google Scholar 

  10. R. Cabala, V. Meister, and K. Potje-Kamloth, J. Chem. Soc., Faraday Trans. 93, 131 (1997).

    Article  CAS  Google Scholar 

  11. J. Tang, F. Redl, Y. Zhu, T. Siegrist, L. E. Brus, and M. L. Steigerwald, Nano Lett. 5, 543 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. X. Jiang, T. Herricks, and Y. Xia, Adv. Mater. 15, 1205 (2003).

    Article  CAS  Google Scholar 

  13. M. Tabatabaee, A. A. Mozafari, M. Ghassemzadeh, M. Reza Nateghi, and I. Abedini, Bulg. Chem.Commun. 45, 90 (2013).

    CAS  Google Scholar 

  14. Y. Su, F. Peng, Z. Jiang, Y. Zhong, Y. Lu, X. Jiang, Q. Huang, C. Fan, S.-T. Lee, and Y. He, Biomaterials 32, 5855 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Z. Han, J. Zhang, X. Yang, and W. Cao, Sol. Energy Mater. Sol. Cells 95, 483 (2011).

    Article  CAS  Google Scholar 

  16. Y. Du and G.-C. Li, Phys. E (Amsterdam, Neth.) 43, 994 (2011).

  17. P. Bera, C.-H. Kim, and S. Seok, II, Solid State Sci. 12, 1741 (2010).

    Article  CAS  Google Scholar 

  18. V. S. Sawant, S. S. Shinde, R. J. Deokate, C. H. Bhosale, B. K. Chougule, and K. Y. Rajpure, Appl. Surf. Sci. 255, 6675 (2009).

    Article  CAS  Google Scholar 

  19. P. Biljana, Mater. Chem. Phys. 119, 367 (2010).

    Article  CAS  Google Scholar 

  20. S. Kondawar, R. Mahore, A. Dahegaonkar, and S. Agrawal, Adv. Appl. Sci. Res. 2, 401 (2011).

    CAS  Google Scholar 

  21. C. C. Vidyasagar, Y. A. Naik, T. G. Venkatesh, and R. Viswanatha, Powder Technol. 214, 337 (2011).

    Article  CAS  Google Scholar 

  22. H. Colak and O. Turkoglu, Mater. Sci. Semicond. Process. 16, 712 (2013).

    Article  CAS  Google Scholar 

  23. F. Yakuphanoglu, Sol. Energy 85, 2704 (2011).

    Article  CAS  Google Scholar 

  24. S. Calnan and A. N. Tiwari, Thin Solid Films 518, 1839 (2010).

    Article  CAS  Google Scholar 

  25. M. T. Khan, R. Bhargav, A. Kaur, S. K. Dhawan, and S. Chand, Thin Solid Films 519, 1007 (2010).

    Article  CAS  Google Scholar 

  26. S. Ashoka, G. Nagaraju, K. V. Thipperudraiah, and G. T. Chandrappa, Mater. Res. Bull. 45, 1736 (2010).

    Article  CAS  Google Scholar 

  27. S. A. Kavitha, M. P. Dharshini, V. Shally, and S. G. Jayam, Int. J. Eng. Trends Technol. 60, 147 (2018).

    Article  Google Scholar 

  28. S. Roy, K. R. Anilkumar, and M. V. N. Ambika Prasad, J. Appl. Polym. Sci. 123, 1928 (2012).

    Article  CAS  Google Scholar 

  29. S. A.Yeriskin, H. Ibrahim Unal, and B. Sari, J. Appl. Polym. Sci. 120, 390 (2011).

    Article  CAS  Google Scholar 

  30. A. Shakoor, H. Anwar, and T. Z. Rizvi, J. Compos. Mater. 42, 2101 (2008).

    Article  CAS  Google Scholar 

  31. L. Xingwei, G. Wang, L. Xiaoxuan, and L. Dongming, Appl. Surf. Sci. 229, 395 (2004).

    Article  CAS  Google Scholar 

  32. A. L. Patterson, Phys. Rev. J. 56, 978 (1939).

    Article  CAS  Google Scholar 

  33. L. Zheng, Y. Xu, D. Jin, and Y. Xie, Chem. - Asian J. 6, 1505 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Jaidev, R. I. Jafri, A. K. Mishra, and S. Ramaprabhu, J. Mater. Chem. 21, 17601 (2011).

    Article  CAS  Google Scholar 

  35. W. L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1914).

    Google Scholar 

  36. R. A. Zargar, S. Chackarabarti, M. Arora, and A. K. Hafiz, Int. Nano Lett. 6, 99 (2016).

    Article  CAS  Google Scholar 

  37. A. Elahi, M. Irfan, A. Shakoor, N. A. Niaz, K. Mahmood, and M. Qasim, J. Alloy. Compd. 651, 328 (2015).

    Article  CAS  Google Scholar 

  38. S. R. Pollack, J. Appl. Phys. 34, 877 (1963).

    Article  CAS  Google Scholar 

  39. A. Shakoor, T. Z. Rizvi, M. Sulaiman, M. Nasir, and M. Ishtiaq, J. Mater. Sci.: Mater. Electron. 21, 603 (2010).

    CAS  Google Scholar 

  40. E. H. Rhoderick and R. H. William, Metal Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1998).

    Google Scholar 

  41. S. M. Sze, Semiconductor Devices (Wiley, New York, 1985).

    Google Scholar 

  42. H. Tomozawa, D. Braun, S. Philips, A. J. Heeger, and H. Kroemer, Synt. Met. 22, 63 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadeem Anwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem Anwar, Shakoor, A., Qamar, W. et al. Fabrication of Schottky Diodes Based on Cu Electrode and Polyaniline Cadmium Oxide (PANI/CdO) Composites. Polym. Sci. Ser. B 63, 432–440 (2021). https://doi.org/10.1134/S1560090421040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090421040023

Navigation