Skip to main content
Log in

Deep brain stimulation in Huntington’s disease: a literature review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Huntington’s disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive decline, and behavioral changes. The complex constellation of clinical symptoms still makes the therapeutic management challenging. In the new era of functional neurosurgery, deep brain stimulation (DBS) may represent a promising therapeutic approach in selected HD patients.

Methods

Articles describing the effect of DBS in patients affected by HD were selected from Medline and PubMed by the association of text words with MeSH terms as follows: “Deep brain stimulation,” “DBS,” and “HD,” “Huntington’s disease,” and “Huntington.” Details on repeat expansion, age at operation, target of operation, duration of follow-up, stimulation parameters, adverse events, and outcome measures were collected.

Results

Twenty eligible studies, assessing 42 patients with HD, were identified. The effect of globus pallidus internus (GPi) DBS on Unified Huntington’s Disease Rating Scale (UHDRS) total score revealed in 10 studies an improvement of total score from 5.4 to 34.5%, and in 4 studies, an increase of motor score from 3.8 to 97.8%. Bilateral GPi-DBS was reported to be effective in reducing Chorea subscore in all studies, with a mean percentage reduction from 21.4 to 73.6%.

Conclusions

HD patients with predominant choreic symptoms may be the best candidates for surgery, but the role of other clinical features and of disease progression should be elucidated. For this reason, there is a need for more reliable criteria that may guide the selection of HD patients suitable for DBS. Accordingly, further studies including functional outcomes as primary endpoints are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caron NS, Wright GEB, Hayden MR (1998) Huntington disease. [updated 2020 Jun 11]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2020

  2. Bonomo R, Latorre A, Balint B, Smilowska K, Rocchi L, Rothwell JC, Zappia M, Bhatia KP (2020) Voluntary inhibitory control of chorea: a case series. Mov Disord Clin Pract 7(3):308–312. https://doi.org/10.1002/mdc3.12907

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kowall NM, Ferrante RJ, Martin JB (1987) Patterns of cell loss in Huntington’s disease. Trends Neurosci 10:24–29

    Article  Google Scholar 

  4. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington’s disease. Proc Natl Acad Sci USA 64:397–404

  5. Albin RL, Young AB, Penney JB, Handelin B, Balfour KD, Markel DS, Tourtelotte WW, Reiner A (1990) Abnormalities of striatal projection neurons and N-methyl-d-aspartate receptors in presymptomatic Huntington’s disease. New Engl J Med 322:1293–1298

    Article  CAS  Google Scholar 

  6. Sapp E, Ge P, Aizawa H, Bird E, Penney J, Young AB, Vonsattel JP, DiFiglia M (1995) Evidence for a preferential loss of enkephalin immunoreactivity in the external globus pallidus in low grade Huntington’s disease using high resolution image analysis. Neuroscience 64:397–404

    Article  CAS  Google Scholar 

  7. Starr PA, Kang GA, Heath S, Shimamoto S, Turner RS (2008) Pallidal neuronal discharge in Huntington’s disease: support for selective loss of striatal cells originating the indirect pathway. Exp Neurol 211(1):227–233

    Article  CAS  Google Scholar 

  8. Miller BR, Walker AG, Shah AS, Barton SJ, Rebec GV (2008) Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington’s disease. J Neurophysiol 100(4):2205–2216

    Article  Google Scholar 

  9. Miller BR, Walker AG, Fowler SC, von Horsten S, Riess O, Johnson MA, Rebec GV (2010) Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington’s disease. Neurobiol Dis 37(1):106–113

    Article  CAS  Google Scholar 

  10. Penney JB, Young AB (1986) Striatal inhomogeneities and basal ganglia function. Mov Disord 1:3–15

    Article  Google Scholar 

  11. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  Google Scholar 

  12. Berardelli A, Noth J, Thompson PD et al (1999) Pathophysiology of chorea and bradykinesia in Huntington’s disease. Mov Disord 14(3):398–403

    Article  CAS  Google Scholar 

  13. Joel D, Ayalon L, Tarrasch R, Veenman L, Feldon J, Weiner I (1998) Electrolytic lesion of globus pallidus ameliorates the behavioural and neurodegenerative effects of quinolinic acid lesion of the striatum: a potential novel treatment in a rat model of Huntington’s disease. Brain Res 787:143–148

    Article  CAS  Google Scholar 

  14. Spiegel EA, Wycis HT (1952) Thalamotomy and pallidotomy for treatment of choreic movements. Acta neuroch 2:417–422. https://doi.org/10.1007/BF01405833

    Article  CAS  Google Scholar 

  15. De Vloo P, Breen DP, Milosevic L, Lee DJ, Dallapiazza RF, Hutchison WD, Lang AE, Lozano AM (2019) Successful pallidotomy for post-hyperglycemic hemichorea-ballism. Parkinsonism Relat Disord 61:228–230. https://doi.org/10.1016/j.parkreldis.2018.11.023

    Article  PubMed  Google Scholar 

  16. Watarai M, Hashimoto T, Yamamoto K, Matsumoto Y, Tada T, Ikeda S (2003) Pallidotomy for severe generalized chorea of juvenile-onset dentatorubral-pallidoluysian atrophy. Neurology 61(10):1452–1454. https://doi.org/10.1212/01.wnl.0000094202.26313.73

    Article  CAS  PubMed  Google Scholar 

  17. Fujimoto Y, Isozaki E, Yokochi F, Yamakawa K, Takahashi H, Hirai S (1997) A case of chorea-acanthocytosis successfully treated with posteroventral pallidotomy. Rinsho Shinkeigaku 37(10):891–894 (Japanese)

  18. Edwards TC, Zrinzo L, Limousin P, Foltynie T (2012) Deep brain stimulation in the treatment of chorea. Mov Disord 27(3):357–363. https://doi.org/10.1002/mds.23967

    Article  PubMed  Google Scholar 

  19. Vitek JL, Jones R, Bakay REA, Hersch SM (2000) Pallidotomy for Huntington’s disease. Ann Neurol 48:429

    Google Scholar 

  20. Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality? Neurotherapeutics 13(2):264–283. https://doi.org/10.1007/s13311-016-0426-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Florence G, Sameshima K, Fonoff ET, Hamani C (2016) Deep brain stimulation: more complex than the inhibition of cells and excitation of fibers. Neuroscientist 22(4):332–345. https://doi.org/10.1177/1073858415591964

    Article  CAS  PubMed  Google Scholar 

  22. Lozano AM, Lipsman N, Bergman H et al (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–160. https://doi.org/10.1038/s41582-018-0128-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferrea S, Groiss SJ, Elben S, Hartmann CJ, Dunnett SB, Rosser A, Saft C, Schnitzler A, Vesper J, Wojtecki L (2018) Surgical approaches working group of the European Huntington’s disease network (EHDN). Pallidal deep brain stimulation in juvenile Huntington’s disease: local field potential oscillations and clinical data. J Neurol 265(7):1573–1579. https://doi.org/10.1007/s00415-018-8880-1

    Article  PubMed  Google Scholar 

  24. Zittel S, Moll CK, Gulberti A, Tadic V, Rasche D, Bäumer T, Fellbrich A, Brüggemann N, Engel AK, Tronnier V, Hamel W, Münchau A (2015) Pallidal deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord 21(9):1105–1108. https://doi.org/10.1016/j.parkreldis.2015.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Zittel S, Tadic V, Moll CKE, Bäumer T, Fellbrich A, Gulberti A, Rasche D, Brüggemann N, Tronnier V, Münchau A (2018) Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord 51:96–100. https://doi.org/10.1016/j.parkreldis.2018.02.030

    Article  CAS  PubMed  Google Scholar 

  26. Delorme C, Rogers A, Lau B, Francisque H, Welter ML, Vidal SF, Yelnik J, Durr A, Grabli D, Karachi C (2016) Deep brain stimulation of the internal pallidum in Huntington’s disease patients: clinical outcome and neuronal firing patterns. J Neurol 263(2):290–298. https://doi.org/10.1007/s00415-015-7968-0

    Article  PubMed  Google Scholar 

  27. Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, Descours I, Coubes C, de Moura AM, Corlobe A, James S, Roujeau T, Coubes P (2014) Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg 121(1):114–122. https://doi.org/10.3171/2014.2.JNS131722

    Article  PubMed  Google Scholar 

  28. Wojtecki L, Groiss SJ, Ferrea S, Elben S, Hartmann CJ, Dunnett SB, Rosser A, Saft C, Südmeyer M, Ohmann C, Schnitzler A, Vesper J (2015) Surgical approaches working group of the European Huntington’s disease network (EHDN). A prospective pilot trial for pallidal deep brain stimulation in Huntington’s disease. Front Neurol 18(6):177. https://doi.org/10.3389/fneur.2015.00177

    Article  Google Scholar 

  29. Beste C, Mückschel M, Elben S, Hartmann J, McIntyre CC, Saft C, Vesper J, Schnitzler A, Wojtecki L (2015) Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct Funct 220(4):2441–2448. https://doi.org/10.1007/s00429-014-0805-x

    Article  CAS  PubMed  Google Scholar 

  30. Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, Foote KD, Bowers D, Ward HE, Sanchez-Ramos J, Okun MS (2013) Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg 91(2):129–133. https://doi.org/10.1159/000341070

    Article  PubMed  Google Scholar 

  31. Kang GA, Heath S, Rothlind J, Starr PA (2011) Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry 82(3):272–277. https://doi.org/10.1136/jnnp.2009.202903

    Article  PubMed  Google Scholar 

  32. Gruber D, Kuhn AA, Schoenecker T, Kopp UA, Kivi A, Huebl J, Lobsien E, Mueller B, Schneider GH, Kupsch A (2014) Quadruple deep brain stimulation in Huntington’s disease, targeting pallidum and subthalamic nucleus: case report and review of the literature. J Neural Transm (Vienna) 121(10):1303–1312. https://doi.org/10.1007/s00702-014-1201-7

    Article  CAS  Google Scholar 

  33. Spielberger S, Hotter A, Wolf E, Eisner W, Müller J, Poewe W, Seppi K (2012) Deep brain stimulation in Huntington’s disease: a 4-year follow-up case report. Mov Disord 27(6):806–807; author reply 807–8. doi: https://doi.org/10.1002/mds.24959

  34. Vedam-Mai V, Martinez-Ramirez D, Hilliard JD, Carbunaru S, Yachnis AT, Bloom J, Keeling P, Awe L, Foote KD, Okun M (2016) Post-mortem findings in Huntington’s deep brain stimulation: a moving target due to atrophy. Tremor Other Hyperkinet Mov (N Y) 6:372

    Article  Google Scholar 

  35. Biolsi B, Cif L, Fertit HE, Robles SG, Coubes P (2008) Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 109(1):130–132. https://doi.org/10.3171/JNS/2008/109/7/0130

    Article  PubMed  Google Scholar 

  36. Cislaghi G, Capiluppi E, Saleh C, Romano L, Servello D, Mariani C, Porto M (2014) Bilateral globus pallidus stimulation in Westphal variant of Huntington disease. Neuromodulation 17(5):502–505. https://doi.org/10.1111/ner.12098

    Article  PubMed  Google Scholar 

  37. Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR (2008) GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord 23(9):1289–1292. https://doi.org/10.1002/mds.22116

    Article  PubMed  Google Scholar 

  38. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, Hutchison WD, Lozano AM (2004) Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol 56(2):290–294. https://doi.org/10.1002/ana.20183

    Article  PubMed  Google Scholar 

  39. Fawcett AP, Moro E, Lang AE, Lozano AM, Hutchison WD (2005) Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington’s disease. Mov Disord 20(3):371–377. https://doi.org/10.1002/mds.20356 (PMID: 15580556)

    Article  PubMed  Google Scholar 

  40. López-Sendón Moreno JL, García-Caldentey J, Regidor I, del Álamo M, García de Yébenes J (2014) A 5-year follow-up of deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord 20(2):260–261. https://doi.org/10.1016/j.parkreldis.2013.11.007

    Article  PubMed  Google Scholar 

  41. Huys D, Bartsch C, Poppe P, Lenartz D, Huff W, Prütting J, Timmermann L, Klosterkötter J, Maarouf M, Rommel T, Hartmann A, Sturm V, Kuhn J (2013) Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr Neurol Psychiatr 81(4):202–205. https://doi.org/10.1055/s-0033-1335097

    Article  CAS  PubMed  Google Scholar 

  42. Hebb MO, Garcia R, Gaudet P, Mendez IM (2006) Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: technical case report. Neurosurgery 58(2):E383; discussion E383. https://doi.org/10.1227/01.NEU.0000195068.19801.18

  43. Loutfi G, Linder J, Hariz G, Hariz M, Blomstedt P (2014) Pallidal deep brain stimulation in the treatment of Huntington’s chorea. Brain Disord Therapy 3(4):2. https://doi.org/10.4172/2168-975X.1000136

    Article  Google Scholar 

  44. Yin Z, Bai Y, Zhang H, Liu H, Hu W, Meng F, Yang A, Zhang J (2020) An individual patient analysis of the efficacy of using GPi-DBS to treat Huntington’s disease. Brain Stimul 13(6):1722–1731. https://doi.org/10.1016/j.brs.2020.09.025

    Article  PubMed  Google Scholar 

  45. Ravina B, Romer M, Constantinescu R, Biglan K, Brocht A, Kieburtz K, Shoulson I, McDermott MP (2008) The relationship between CAG repeat length and clinical progression in Huntington’s disease. Mov Disord 23(9):1223–1227. https://doi.org/10.1002/mds.21988

    Article  PubMed  Google Scholar 

  46. Mahant N, McCusker EA, Byth K, Graham S, Huntington Study Group (2003) Huntington’s disease: clinical correlates of disability and progression. Neurology 61(8):1085–1092. https://doi.org/10.1212/01.wnl.0000086373.32347.16 (PMID: 14581669)

    Article  CAS  PubMed  Google Scholar 

  47. Ross CA, Pantelyat A, Kogan J, Brandt J (2014) Determinants of functional disability in Huntington’s disease: role of cognitive and motor dysfunction. Mov Disord 29(11):1351–1358. https://doi.org/10.1002/mds.26012

    Article  PubMed  PubMed Central  Google Scholar 

  48. Frank S (2009) Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol 9:62. https://doi.org/10.1186/1471-2377-9-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ligot N, Krystkowiak P, Simonin C et al (2011) External globus pallidus stimulation modulates brain connectivity in Huntington’s disease. J Cereb Blood Flow Metab 31(1):41–46. https://doi.org/10.1038/jcbfm.2010.186

    Article  PubMed  Google Scholar 

  50. Aziz NA, Jurgens CK, Landwehrmeyer GB, van Roon-Mom WMC, van Ommen JGB, Stijnen T, Roos RAC et al (2009) Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease. Neurology 73:1280–1285

    Article  CAS  Google Scholar 

  51. Chao TK, Hu J, Pringsheim T (2017) Risk factors for the onset and progression of Huntington disease. Neurotoxicology 61:79–99

    Article  CAS  Google Scholar 

  52. Grahn PJ, Mallory GW, Khurram OU et al (2014) A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 8:169. https://doi.org/10.3389/fnins.2014.00169

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio E. Elia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonomo, R., Elia, A.E., Bonomo, G. et al. Deep brain stimulation in Huntington’s disease: a literature review. Neurol Sci 42, 4447–4457 (2021). https://doi.org/10.1007/s10072-021-05527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05527-1

Keywords

Navigation