Skip to main content
Log in

Inorganic–organic hybrids assembled by flexible multidentate linker: design, structure and luminescence

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three coordination complexes, [Cu(L1)(2,2–bipy)]2n·3nH2O (1), [Cu(L1)(2,2–bipy)2xH2O (2: x = 3.5 and 3: x = 5), were synthesized by reactions of the flexible ligand 1,1´-methylenebis(5-methyl-pyrazole-4-carboxylic acid) (H2L1) and coligands 2,2'–bipyridyl (2,2-bipy) with Cu(OAc)2·H2O in different reaction condition, respectively. The structures of these complexes were established by elemental analysis, IR and single-crystal X-ray diffraction analysis. Complex 1 possessed a one-dimensional (1D) chainlike structure, (L1)2− group exhibited trans-configuration and coordinated to Cu(II) ions by carboxylate O atoms in µ2k:O,O′; k:O′′′,O′′′ mode. In the similar subjectival structure of 2 and 3, (L1)2− anions also presented trans-configuration, but only one carboxylate group chelated to a Cu(II) ion, and the other carboxylate group remains free in a deprotonated form. The 1D chains in 1 were further assembled to a 3D supramolecular architecture via intermolecular C–H···O hydrogen bond. The mononuclear zwitterionic complexes 2 and 3 are further assembled into a 2D/3D supramolecular architecture by intermolecular hydrogen bonds and π···π interaction. The thermal and photoluminescent properties of 13 in the solid state have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cook TR, Zheng YR, Stang PJ (2013) Chem Rev 113:734–777

    Article  CAS  Google Scholar 

  2. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Chem Soc Rev 46:3242–3285

    Article  CAS  Google Scholar 

  3. Gong YN, Xiong P, He CT, Deng JH, Zhong DC (2018) Inorg Chem 57:5013–5018

    Article  CAS  Google Scholar 

  4. Jiang YX, Cong L, Li FL, Gu HW, Braunstein P, Lang JP (2017) Nanoscale 12:4816–4825

    Google Scholar 

  5. Xu LY, Yang W, Liu GF, Ren ZG, Lang JP (2018) CrystEngComm 20:4049–4057

    Article  CAS  Google Scholar 

  6. Liu Q, Cheng ML, Yu LL, Chen SC, Shao YL, Zhai CW, Yin FX (2016) RSC Adv 6:52040–52047

    Article  CAS  Google Scholar 

  7. Noh TH, Jung OS (2016) Acc Chem Res 49:1835–1843

    Article  CAS  Google Scholar 

  8. Tu BB, Pang QQ, Wu DF, Song Y, Weng LL, Li QW (2014) J Am Chem Soc 136:14465–14471

    Article  CAS  Google Scholar 

  9. Tu BB, Pang QQ, Xu HS, Li XM, Wang YL, Ma Z, Weng LL, Li QW (2017) J Am Chem Soc 139:7998–8007

    Article  CAS  Google Scholar 

  10. Cheng ML, Han W, Liu Q, Bao ZT, Li ZF, Chen LT, Sun XQ, Xi HT (2014) J Coord Chem 67:215–226

    Article  CAS  Google Scholar 

  11. Cheng ML, Qin MN, Sun L, Liu L, Liu Q, Tang XY (2020) Dalton Trans 49:7758–7765

    Article  CAS  Google Scholar 

  12. Qi XL, Ye JW, Lin RB, Liao PQ, Liu SY, He CT, Zhang JP, Chen XM (2015) Inorg Chem Front 2:136–140

    Article  CAS  Google Scholar 

  13. Cheng ML, Sun L, Han W, Wang S, Liu Q, Sun XQ, Xi HT (2016) New J Chem 40:10504–10511

    Article  CAS  Google Scholar 

  14. Santini C (2004) Inorg Chem Commun 7:834–837

    Article  CAS  Google Scholar 

  15. Radi S, Yahyi A, Ettouhami A, Jha AC, Adarsh NN, Robeyns K, Garcia Y (2015) Polyhedron 85:383–388

    Article  CAS  Google Scholar 

  16. Radi S, El-Massaoudi M, Benaissa H, Adarsh NN, Ferbinteanu M, Devlin E, Sanakisd Y, Garcia Y (2017) New J Chem 41:8232–8241

    Article  CAS  Google Scholar 

  17. Cheng ML, Bao JT, Wu YJ, Yang BX, Wang QH, Sun L, Liu Q (2018) Chem Select 3:4811–4817

    CAS  Google Scholar 

  18. Cheng ML, Wang QH, Bao TT, Wu YJ, Sun L, Yang BB, Liu Q (2017) New J Chem 41:5151–5160

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2013) SHELXT-2013. University of Göttingen, Göttingen, Germany

    Google Scholar 

  20. Oshio H, Nagashima U (1992) Inorg Chem 31:3295–3301

    Article  CAS  Google Scholar 

  21. Yang AH, Quan YP, Zhao LH, Cui JZ, Gao HL, Lu FL, Shi W, Cheng P (2009) J Coord Chem 62:3306–3313

    Article  CAS  Google Scholar 

  22. Dalai S, Mukherjee PS, Rogez G, Mallah T, Drew MGB, Chaudhuri RN (2002) Eur J Inorg Chem 12:3292–3297

    Article  Google Scholar 

  23. Gerbeleu NV, Simonov YA, Timko GA, Bourosh PN, Lipkowski J, Baka SG, Saburov DI, Mazus M (1999) Russ J Inorg Chem 44:1185–1190

    Google Scholar 

  24. Wang RT, Liu LN, Lv LL, Wang X, Chen R, Wu BL (2017) Cryst Growth Des 17:3616–3624

    Article  CAS  Google Scholar 

  25. Tao J, Tong ML, Shi JX, Chen XM, Seik WN (2000) Chem Commun 2000:2043–2044

    Article  Google Scholar 

  26. Yam VW, Lo KK (1999) Chem Soc Rev 28:323–334

    Article  CAS  Google Scholar 

  27. Fu MM, Fu L, Cui GH (2021) Dalton Trans 50:10180–10186

    Article  CAS  Google Scholar 

  28. Shi YS, Yu Q, Zhang JW, Cui GH (2021) Cryst Eng Comm 23:1604–1615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 21101018), Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 13KJB150001), and the Natural Science Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 461 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, Y., Zhao, Y. et al. Inorganic–organic hybrids assembled by flexible multidentate linker: design, structure and luminescence. Transit Met Chem 46, 575–581 (2021). https://doi.org/10.1007/s11243-021-00475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00475-3

Navigation