Skip to main content
Log in

A stochastic SPOD-Galerkin model for broadband turbulent flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The use of spectral proper orthogonal decomposition (SPOD) to construct low-order models for broadband turbulent flows is explored. The choice of SPOD modes as basis vectors is motivated by their optimality and space-time coherence properties for statistically stationary flows. This work follows the modeling paradigm that complex nonlinear fluid dynamics can be approximated as stochastically forced linear systems. The proposed stochastic two-level SPOD-Galerkin model governs a compound state consisting of the modal expansion coefficients and forcing coefficients. In the first level, the modal expansion coefficients are advanced by the forced linearized Navier-Stokes operator under the linear time-invariant assumption. The second level governs the forcing coefficients, which compensate for the offset between the linear approximation and the true state. At this level, least squares regression is used to achieve closure by modeling nonlinear interactions between modes. The statistics of the remaining residue are used to construct a dewhitening filter that facilitates the use of white noise to drive the model. If the data residue is used as the sole input, the model accurately recovers the original flow trajectory for all times. If the residue is modeled as stochastic input, then the model generates surrogate data that accurately reproduces the second-order statistics and dynamics of the original data. The stochastic model uncertainty, predictability, and stability are quantified analytically and through Monte Carlo simulations. The model is demonstrated on large eddy simulation data of a turbulent jet at Mach number \(M=0.9\) and Reynolds number \(\mathrm {Re}_D\approx 10^6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173 (1988)

    Article  MathSciNet  Google Scholar 

  2. Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable galerkin reduced order models for linearized compressible flow. J. Compt. Phys. 228(6), 1932–1946 (2009)

    Article  MathSciNet  Google Scholar 

  3. Brès, G.A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A.V.G., Towne, A., Lele, S.K., Colonius, T., Schmidt, O.T.: Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83–124 (2018)

    Article  MathSciNet  Google Scholar 

  4. Cavalieri, André VG., Rodríguez, Daniel, Jordan, Peter, Colonius, Tim, Gervais, Yves: Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559–592 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chekroun, M.D., Kondrashov, D.: Data-adaptive harmonic spectra and multilayer stuart-landau models. Chaos: Interdiscip. J. Nonlinear Sci. 27(9), 093110 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chu, B.-T.: On the energy transfer to small disturbances in fluid flow (part 1). Acta Mech. 1(3), 215–234 (1965)

    Article  Google Scholar 

  7. Drohmann, M., Carlberg, K.: The romes method for statistical modeling of reduced-order-model error. SIAM/ASA J. Uncertain. Quantif. 3(1), 116–145 (2015)

    Article  MathSciNet  Google Scholar 

  8. Glauser, M, N., Leib, S. J., Geroge, W. K.: Coherent structures in the axisymmetric turbulent jet mixing layer. In: Turbulent Shear Flows 5, (ed. F. Durst et al.), pp. 134–145. Springer. (1987)

  9. Gordeyev, S.V., Thomas, F.O.: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145–194 (2000)

    Article  Google Scholar 

  10. Gudmundsson, K., Colonius, T.: Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97–128 (2011)

    Article  Google Scholar 

  11. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  12. Holmes, P., Lumley, J.L., Berkooz, G., Mattingly, J.C., Wittenberg, R.W.: Low-dimensional models of coherent structures in turbulence. Phys. Rep. 287(4), 337–384 (1997)

    Article  MathSciNet  Google Scholar 

  13. Hussain, A.K.M.F., Reynolds, W.C.: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41(2), 241–258 (1970)

    Article  Google Scholar 

  14. Johnson, S.D., Battisti, D.S., Sarachik, E.S.: Empirically derived markov models and prediction of tropical pacific sea surface temperature anomalies. J. Clim. 13(1), 3–17 (2000)

    Article  Google Scholar 

  15. Kalashnikova, I., Barone, M.F.: Stable and efficient galerkin reduced order models for non-linear fluid flow. In: 6th AIAA Theoretical Fluid Mechanics Conference, p. 3110 (2011)

  16. Kalashnikova, I., Barone, M.F.: Efficient non-linear proper orthogonal decomposition/galerkin reduced order models with stable penalty enforcement of boundary conditions. Int. J. Numer. Meth. Eng. 90(11), 1337–1362 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kondrashov, D., Chekroun, M.D., Ghil, M.: Data-driven non-markovian closure models. Phys. D 297, 33–55 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kondrashov, D., Kravtsov, S., Robertson, A.W., Ghil, M.: A hierarchy of data-based enso models. J. Clim. 18(21), 4425–4444 (2005)

    Article  Google Scholar 

  19. Kravtsov, S., Kondrashov, D., Ghil, M.: Multilevel regression modeling of nonlinear processes: derivation and applications to climatic variability. J. Clim. 18(21), 4404–4424 (2005)

    Article  Google Scholar 

  20. Lumley, J. L. (1967) The structure of inhomogeneous turbulent flows. In Atmospheric turbulence and radio wave propagation (ed. A. M. Yaglom& V. I. Tatarski), pp. 166–178. Nauka

  21. Lumley, J.L.: Stochastic Tools in Turbulence. Academic Press, Cambridge (1970)

    MATH  Google Scholar 

  22. Nekkanti, A., Schmidt, O. T.: Frequency-time analysis, low-rank reconstruction and denoising of turbulent flows using spod. arXiv preprint arXiv:2011.03644 (2020)

  23. Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MathSciNet  Google Scholar 

  24. Penland, C.: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Weather Rev. 117(10), 2165–2185 (1989)

    Article  Google Scholar 

  25. Penland, C.: A stochastic model of indopacific sea surface temperature anomalies. Phys. D 98(2–4), 534–558 (1996)

    Article  Google Scholar 

  26. Penland, C., Matrosova, L.: Prediction of tropical atlantic sea surface temperatures using linear inverse modeling. J. Clim. 11(3), 483–496 (1998)

    Article  Google Scholar 

  27. Penland, C., Sardeshmukh, P.D.: The optimal growth of tropical sea surface temperature anomalies. J. Clim. 8(8), 1999–2024 (1995)

    Article  Google Scholar 

  28. Rempfer, D.: On low-dimensional galerkin models for fluid flow. Theor. Comput. Fluid Dyn. 14(2), 75–88 (2000)

    Article  Google Scholar 

  29. Rowley, C. W.: Modeling, simulation, and control of cavity flow oscillations. PhD thesis, California Institute of Technology (2002)

  30. Rowley, C. W., Colonius, T., Murray, R.: Dynamical models for control of cavity oscillations. In: AIAA Pap., p. 2126 (2001)

  31. Rowley, C.W., Colonius, T., Murray, R.M.: Model reduction for compressible flows using pod and galerkin projection. Phys. D 189(1–2), 115–129 (2004)

    Article  MathSciNet  Google Scholar 

  32. Rowley, C.W., Dawson, S.T.: Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387–417 (2017)

    Article  MathSciNet  Google Scholar 

  33. Schmidt, O.T., Colonius, T.: Guide to spectral proper orthogonal decomposition. AIAA J. 58(3), 1023–1033 (2020)

    Article  Google Scholar 

  34. Schmidt, O. T., Colonius, T., Bres, G. A.: Wavepacket intermittency and its role in turbulent jet noise. In: 55th AIAA Aerospace Sciences Meeting, p. 0686 (2017a)

  35. Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V., Jordan, P., Brès, G.A.: Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 1153–1181 (2017)

    Article  MathSciNet  Google Scholar 

  36. Schmidt, O.T., Towne, A., Rigas, G., Colonius, T., Brès, G.A.: Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953–982 (2018)

    Article  MathSciNet  Google Scholar 

  37. Sirovich, L.: Turbulence and the dynamics of coherent structures. I. Coherent structures. Quart. Appl. Math. 45(3), 561–571 (1987)

    Article  MathSciNet  Google Scholar 

  38. Stengel, R.F.: Stochastic Optimal Control: Theory and Application. Wiley, New York (1986)

    MATH  Google Scholar 

  39. Towne, A., Cavalieri, A.V., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V., Brès, G.A.: Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 1113–1152 (2017)

    Article  Google Scholar 

  40. Towne, A., Schmidt, O.T., Colonius, T.: Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867 (2018)

    Article  MathSciNet  Google Scholar 

  41. Tutkun, M., George, W.K.: Lumley decomposition of turbulent boundary layer at high reynolds numbers. Phys. Fluids 29(2), 020707 (2017)

    Article  Google Scholar 

  42. Tutkun, M., Johansson, P.B.V., George, W.K.: Three-component vectorial proper orthogonal decomposition of axisymmetric wake behind a disk. AIAA J. 46(5), 1118–1134 (2008)

    Article  Google Scholar 

  43. Van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I. Wiley, New York (1968)

    MATH  Google Scholar 

  44. Zare, A., Jovanović, M.R., Georgiou, T.G.: Colour of turbulence. J. Fluid Mech. 812, 636–680 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver T. Schmidt.

Ethics declarations

Conflict of interests

The authors report no conflict of interest.

Additional information

Communicated by Luca Magri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Stochastic SPOD-Galerkin two-level model for rank 2\(\times \)129 and rank 3\(\times \)129 cases

Stochastic SPOD-Galerkin two-level model for rank 2\(\times \)129 and rank 3\(\times \)129 cases

This appendix reports the additional results for the rank \(2\times 129\) and rank \(3\times 129\) cases, which were omitted in Sect. 4.3 for brevity. Figure 16a–d show the comparison between the power spectra of the state coefficients \(\varvec{a}_i\) and the rank \(2\times 129\) expansion coefficients at different frequencies. Figure 16e–h report the corresponding results for the rank 3\(\times \)129 case. Good agreements between the approximations and models are observed in both cases. The corresponding SPOD eigenvalue spectra shown in Fig. 16i,j show that both models accurately reproduce the eigenvalue spectra of the LES data for a wide range of frequencies. From these observations and the favorable results obtained for the \(1\times 129\) baseline model, as previously reported in Figs. 10 and 15, it concluded that subdominant SPOD modes are not required in the modal expansion.

Fig. 16
figure 16

Power spectra of the state coefficients \(\varvec{a}_i\) of low-rank approximations (red) and 2–level models (black) of rank 2\(\times \)129 (first row) and rank 3\(\times \)129 (second row) at four representative frequencies: a,e \(St=0.2\); b,f \(St=0.41\); c,g \(St=0.63\); d,h \(St=0.85\). Comparison of SPOD eigenvalue spectra of the LES data (black), low-rank approximations (blue) and 2–level models (red): i rank \(2\times 129\); j rank \(3\times 129\). Compare Figs. 10, 12 and 15

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Schmidt, O.T. A stochastic SPOD-Galerkin model for broadband turbulent flows. Theor. Comput. Fluid Dyn. 35, 759–782 (2021). https://doi.org/10.1007/s00162-021-00588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00588-6

Keywords

Navigation