Skip to main content

Advertisement

Log in

Hand-drawn electrode based disposable paper chip for artificial sweat analysis using impedance spectroscopy

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Low cost, disposable paper based electrical sensor to examine the analyte concentration in an extremely small volume of sample solution is essential for environmental and healthcare applications. For the development of paper based devices, sophisticated instruments are essential to pattern electrode on the top surface of the paper. In most cases, such fabricated device results in direct contact with the analyte solution on the surface of the electrode during electrical detection and leads to high electrical double layer capacitance. In this work, we have focused to reduce the double layer capacitance by fabricating hand drawn electrode paper sensor utilising the reverse side of the paper. This design acts as a sample storage and facilitate impedimetric sensing of ionic concentration of analyte solution using a few microlitre. Droplet formation at the bottom of the paper in the confined area is visually monitored to reduce sample wastage. The interaction between two different electrode materials (graphite and silver) on the paper substrate with the different volume and concentration of the electrolyte is analysed to improve the robustness and sensitivity of the measurement. Simultaneously, we observed a reduction in the electrical double layer effect on the low sample volumes. The proposed paper based sensor shows the enhanced impedance stability on silver electrode patterned paper chip than graphite electrode paper chip to detect the different ionic concentration of artificial sweat sample. Finally, it demonstrates that paper chip has great potential as a disposable diagnostics sensor in healthcare applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • S. Anastasova, B. Crewther, B. Rosa, G. Yang, P. Bembnowicz, V. Curto, H. Ip, Biosens. Bioelectron. 93, 139 (2017)

    Google Scholar 

  • P. Awasthi, S. Das, Rev. Sci. Instrum. 90, 124103 (2019)

  • P. Awasthi, R. Mukherjee, S.P.O. Kare, S. Das, RSC Adv. 6, 102088 (2016)

    Google Scholar 

  • E. Bernalte, C.W. Foster, D.A.C. Brownson, M. Mosna, G.C. Smith, C.E. Banks, Biosensors 6, 45 (2016)

    Google Scholar 

  • Y. Boonyasit, O. Chailapakul, W. Laiwattanapaisal, Anal. Chim. Acta 936, 1 (2016)

    Google Scholar 

  • D.A. Bruzewicz, M. Reches, G.M. Whitesides, Anal. Chem. 80, 4718 (2008)

    Google Scholar 

  • L.S.A. Busa, M. Maeki, A. Ishida, H. Tani, M. Tokeshi, Sens. Actuators B 236, 433 (2016)

    Google Scholar 

  • C.L.S. Chagas, C. Duarte, E. De Oliveira, L. Júnior, Electrophoresis 36, 1837 (2015)

    Google Scholar 

  • S. Chaiyo, W. Siangproh, A. Apilux, O. Chailapakul, Anal. Chim. Acta 866, 75 (2015)

    Google Scholar 

  • S. Chaiyo, E. Mehmeti, W. Siangproh, T.L. Hoang, H.P. Nguyen, O. Chailapakul, K. Kalcher, Biosens. Bioelectron. 102, 113 (2018)

    Google Scholar 

  • J. Chouler, Á. Cruz-Izquierdo, S. Rengaraj, J.L. Scott, M. Di, Biosens. Bioelectron. 102, 49 (2018)

    Google Scholar 

  • P. Dak, A. Ebrahimi, M.A. Alam, Lab Chip 14, 2469 (2014)

    Google Scholar 

  • S.S. Das, S. Kar, S. Dawn, P. Saha, S. Chakraborty, Phys. Rev. Appl. 12, 1 (2019)

    Google Scholar 

  • N. Dossi, R. Toniolo, A. Pizzariello, F. Impellizzieri, E. Piccin, G. Bontempelli, Electrophoresis 34, 2085 (2013)

    Google Scholar 

  • W. Dungchai, O. Chailapakul, C.S. Henry, Analyst 136, 77 (2011)

    Google Scholar 

  • A. Ebrahimi, P. Dak, E. Salm, S. Dash, S.V. Garimell, R. Bashir, M.A. Alam, Lab Chip 13, 4248 (2013)

    Google Scholar 

  • S.E. Feicht, A.S. Khair, Soft Matter 20, 837 (2016)

    Google Scholar 

  • W. Gao, S. Emaminejad, H. Yin, Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. Lien, G.A. Brooks, Nature 529, 509 (2016)

    Google Scholar 

  • C. Gaspar, T. Sikanen, S. Franssila, V. Jokinen, Biomicrofluidics 10, 64120 (2016)

    Google Scholar 

  • F. Ghaderinezhad, R. Amin, M. Temirel, B. Yenilmez, A. Wentworth, S. Tasoglu, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  • F. Güder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan, T.J. Martin, G.M. Whitesides, Angew. Chem. Int. Ed. 02138, 5727 (2016)

    Google Scholar 

  • J. Hong, D.S. Yoon, M. Il Park, J. Choi, T.S. Kim, G. Im, S. Kim, Y. Eugene Pak, K. No, Jpn. J. Appl. Phys. 1(43), 5639 (2004)

    Google Scholar 

  • K.C. Honeychurch, Anal. Chem. 7, 2437 (2015)

    Google Scholar 

  • A. Hussam, J. Hong, J. Electroanal. Chem. 758, 156 (2015)

    Google Scholar 

  • S. Kanaparthi, Electroanalysis 29, 2680 (2017)

    Google Scholar 

  • B.-H. Lee, D.-I. Lee, H. Bae, H. Seong, S.-B. Jeon, M.-L. Seol, J.-W. Han, M. Meyyappan, S.-G. Im, Y.-K. Choi, Sci. Rep. 6, 38389 (2016a)

    Google Scholar 

  • S.H. Lee, J.Y. Ban, C. Oh, H. Park, S. Choi, Sci. Rep. 6, 1 (2016b)

    Google Scholar 

  • K.F. Lei, K.F. Lee, S.I. Yang, Microelectron. Eng. 100, 1 (2012)

    Google Scholar 

  • R. Li, A. Hu, T. Zhang, K.D. Oakes, A.C.S. Appl, Mater. Interfaces 6, 21721 (2014)

    Google Scholar 

  • Z. Li, F. Li, J. Hu, W.H. Wee, Y.L. Han, B. Pingguan-Murphy, T.J. Lu, F. Xu, Analyst 140, 5526 (2015)

    Google Scholar 

  • W. Li, D. Qian, Y. Li, N. Bao, H. Gu, C. Yu, J. Electroanal. Chem. 769, 72 (2016)

    Google Scholar 

  • D.D. Liana, B. Raguse, J.J. Gooding, E. Chow, Sensors (Basel) 12, 11505 (2012)

    Google Scholar 

  • C. Lin, Z. Zhao, J. Kim, J. Huang, Sci. Rep. 4, 3812 (2014)

  • H. Liu, R.M. Crooks, J. Am. Chem. Soc. 133, 17564 (2011)

    Google Scholar 

  • H. Liu, Y. Xiang, Y. Lu, R.M. Crooks, Angew. Chem. Int. Ed. 51, 6925 (2012)

    Google Scholar 

  • G. Liu, C. Ho, N. Slappey, Z. Zhou, S.E. Snelgrove, M. Brown, A. Grabinski, X. Guo, Y. Chen, K. Miller, J. Edwards, T. Kaya, Sens. Actuators B 227, 35 (2016)

    Google Scholar 

  • J. Lu, S. Ge, L. Ge, M. Yan, J. Yu, Electrochim. Acta 80, 334 (2012)

    Google Scholar 

  • H. Ma, Y. Su, C. Jiang, A. Nathan, RSC Adv. 6(87), 84547–84552 (2016)

    Google Scholar 

  • P. Mandal, R. Dey, S. Chakraborty, Lab Chip 12, 4026 (2012)

    Google Scholar 

  • N.K. Mani, A. Prabhu, S.K. Biswas, S. Chakraborty, Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-38308-6

    Article  Google Scholar 

  • L. Manjakkal, K. Cvejin, B. Bajac, J. Kulawik, K. Zaraska, D. Szwagierczak, Electroanalysis 27, 770 (2015)

    Google Scholar 

  • G.V. Martins, A.P.M. Tavares, E. Fortunato, M.G.F. Sales, Sci. Rep. 7, 14558 (2017)

    Google Scholar 

  • A.C.V. Mattar, C. Leone, J.C. Rodrigues, F.V. Adde, J. Cyst. Fibros. 13, 528 (2014)

    Google Scholar 

  • P. Mirtaheri, S. Grimnes, Ø.G. Martinsen, IEEE Trans. Biomed. Eng. 52, 2093 (2005)

    Google Scholar 

  • J.M. Nassar, M.D. Cordero, A.T. Kutbee, M.A. Karimi, G.A.T. Sevilla, A.M. Hussain, A. Shamim, M.M. Hussain, Adv. Mater. Technol. 1, 1 (2016)

    Google Scholar 

  • E.P. Randviir, C.E. Banks, Anal. Methods 5, 1098 (2013)

    Google Scholar 

  • H. Shafiee, W. Asghar, F. Inci, M. Yuksekkaya, M. Jahangir, M.H. Zhang, N.G. Durmus, U.A. Gurkan, D.R. Kuritzkes, U. Demirci, Sci. Rep. 5, 8719 (2015)

    Google Scholar 

  • A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater. 20, 28 (2010)

    Google Scholar 

  • A.T. Singh, D. Lantigua, A. Meka, S. Taing, M. Pandher, G. Camci-Unal, Sensors (Switz.) 2838, 1 (2018)

    Google Scholar 

  • P. Sundriyal, S. Bhattacharya, ACS Appl. Mater. Interfaces 9(44), 38507 (2017)

    Google Scholar 

  • S. Tiwari, M. Vinchurkar, V.R. Rao, G. Garnier, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  • B.W. Veal, P.M. Baldo, A.P. Paulikas, J.A. Eastman, J. Electrochem. Soc. 162, H47 (2015)

    Google Scholar 

  • N.V. Zaryanov, V.N. Nikitina, E.V. Karpova, E.E. Karyakina, A.A. Karyakin, Anal. Chem. 89, 11198 (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Central Research Facilities at IIT Kharagpur for providing the SEM characterisation facilities. We also thank Ms. Priyanka Choudhury for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O Kare, S.P., Das, D., Chaudhury, K. et al. Hand-drawn electrode based disposable paper chip for artificial sweat analysis using impedance spectroscopy. Biomed Microdevices 23, 42 (2021). https://doi.org/10.1007/s10544-021-00578-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00578-9

Keywords

Navigation