Skip to main content

Advertisement

Log in

Engineering Mucic Acid Loaded Polyethylenimine@GoldNanoparticles for Improving the Treatment of Rheumatoid Arthritis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) could be a common autoimmune disease that involves severe joint deformation. The main off-target medicines unable to cure RA, that permits associate in nursing infection with the unwellness. The nanomaterials-based RA medical aid is an excellent strategy to enhance the treatment efficaciousness within the inflammatory region. Specifically, metal-based nanomaterials are a wonderful choice for a delivery vehicle for inflammatory disease agents, because of their novel properties. We have got developed a small-sized Polyethylenimine (PEI) coated gold nanoparticles (AuNPs) with an average diameter of 80 nm, that area unit used for top loading of carboxylic acid (MA). Various microscopic and qualitative analysis tools like high-resolution transmission microscopy (HR-TEM), Field-emission scanning microscope (FE-SEM), and Fourier-transform infrared (FTIR) spectroscopic analysis studies were accustomed to make sure as-made PEI-AuNPs. The invented PEI-coated AuNPs (PEI-AuNPs) exhibited higher contrast with an extended expanse that's promising to store giant amounts of MA medicine. MA is attributed to reducing the inflammatory response by inhibiting the pro-inflammatory cytokines and averting undesirable ancient drug aspect effects in Collagen-induced inflammatory disease (CIA). Many organic chemistry parameters like weight, hind paw volume, protein estimation, anti-serum protein analysis, and microscopic anatomy examination were conducted in Collagen-induced arthritis mice treated at a dose (10 µg) of MA packed PEI-AuNPs. The obtained results showed the MA-PEI-AuNPs were used with success within the treatment of Collagen-induced arthritis, relative to PEI-AuNPs and MA. Therefore, MA loaded PEI-AuNPs as a stimulating candidate in future RA applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Cui and Y. Wang (2021). J. Clust. Sci. 2021, 1–8.

    CAS  Google Scholar 

  2. M. A. Hussain, I. Shad, I. Malik, F. Amjad, T. Kausar, M. Sher, M. N. Tahir, N. Ullah, M. Ashraf, and S. N. A. Bukhari (2020). Saudi Pharm. J. 28, 869–875.

    Article  CAS  Google Scholar 

  3. J. Pulit-Prociak, A. Staroń, O. Długosz, K. Kluz, and M. Banach (2020). J. Clust. Sci. 2020, 1–12.

    Google Scholar 

  4. S. F. El-Amin, M. S. Kwon, T. Starnes, H. R. Allcock, and C. T. Laurencin (2006). J. Inorg. Organomet. Polym. Mater. 16, 387–396.

    Article  CAS  Google Scholar 

  5. L. D. Quan, G. M. Thiele, J. Tian, and D. Wang (2008). Expert Opin. Ther. Pat. 18, 723–738.

    Article  CAS  Google Scholar 

  6. P. Li, Y. Zheng, and X. Chen (2017). Front. Pharmacol. 8, 460.

    Article  CAS  Google Scholar 

  7. T. D. Wilsdon and C. L. Hill (2017). Aust. Prescr. 40 (5), 1.

    Google Scholar 

  8. A. N. Panche, A. D. Diwan, and S. R. Chandra (2016). J. Nutr. Sci. 5, e47.

    Article  CAS  Google Scholar 

  9. A. M. Abdel-Azeem, S. M. Zaki, W. F. Khalil, N. A. Makhlouf, and L. M. Farghaly (2016). Front. Microbiol. 7, 1477.

    Article  Google Scholar 

  10. M. H. Pan, C. S. Lai, and C. T. Ho (2010). Food Funct. 1, 15–31.

    Article  CAS  Google Scholar 

  11. T. C. Wallace and M. M. Giusti (2015). Adv. Nutr. 6, 620–622.

    Article  CAS  Google Scholar 

  12. H. E. Khoo, A. Azlan, S. T. Tang, and S. M. Lim (2017). Food Nutr. Res. 61, 1361779.

    Article  Google Scholar 

  13. M. H. Jeong, H. Ko, H. Jeon, G. J. Sung, S. Y. Park, W. J. Jun, Y. H. Lee, J. Lee, S. W. Lee, H. G. Yoon, and K. C. Choi (2016). Oncotarget 7, 56767.

    Article  Google Scholar 

  14. C. T. Pham (2011). Wiley Interdiscip. Rev. 3, 607–619.

    CAS  Google Scholar 

  15. A. Mani, C. Vasanthi, V. Gopal, and D. Chellathai (2016). Int. Immunopharmacol. 41, 17–23.

    Article  CAS  Google Scholar 

  16. H. Nah, D. Lee, M. Heo, J. S. Lee, S. J. Lee, D. N. Heo, J. Seong, H. N. Lim, Y. H. Lee, H. J. Moon, and Y. S. Hwang (2019). Sci. Technol. Adv. Mater. 20, 826–836.

    Article  CAS  Google Scholar 

  17. S. Taranejoo, J. Liu, P. Verma, and K. Hourigan (2015). J. Appl. Polym. Sci. 2015, 132.

    Google Scholar 

  18. C. Hu, Q. Peng, F. Chen, Z. Zhong, and R. Zhuo (2010). Bioconj. Chem. 21, 836–843.

    Article  CAS  Google Scholar 

  19. Q. Xue and Y. Wang (2021). J. Clust. Sci. 2021, 1–7.

    Google Scholar 

  20. M. M. Ansari, A. Ahmad, R. K. Mishra, S. S. Raza, and R. Khan (2019). ACS Biomater. Sci. Eng. 5, 3380–3397.

    Article  CAS  Google Scholar 

  21. C. Y. Tsai, A. L. Shiau, S. Y. Chen, Y. H. Chen, P. C. Cheng, M. Y. Chang, D. H. Chen, C. H. Chou, C. R. Wang, and C. L. Wu (2007). Arthr. Rheum. 56, 544–554.

    Article  Google Scholar 

  22. R. Singh and J. W. Lillard Jr. (2009). Exp. Mol. Pathol. 86, 215–223.

    Article  CAS  Google Scholar 

  23. H. Singh, J. Du, P. Singh, and T. H. Yi (2018). Artif. Cells Nanomed. Biotechnol. 46, 1163–1170.

    Article  CAS  Google Scholar 

  24. D. Jain and R. Banerjee (2008). J. Biomed. Mater. Res. Part B 86, 105–112.

    Article  Google Scholar 

  25. A. S. AbdRaboh, M. S. El-khooly, and M. Y. Hassaan (2021). J. Inorg. Organomet. Polym. Mater. 2021, 1–12.

    Google Scholar 

  26. P. C. Pandey, G. Pandey, and R. J. Narayan (2017). Biointerphases. 12, 011005.

    Article  Google Scholar 

  27. S. Tummala, M. S. Kumar, and S. K. Pindiprolu (2016). Drug Deliv. 23, 3505–3519.

    Article  CAS  Google Scholar 

  28. Q. Yuan, Y. Zhao, P. Cai, Z. He, F. Gao, J. Zhang, and X. Gao (2019). ACS Omega 4, 14092–14099.

    Article  CAS  Google Scholar 

  29. S. Ueha, F. H. Shand, and K. Matsushima (2012). Front. Immunol. 3, 71.

    Article  Google Scholar 

  30. R. Domingo-Gonzalez, O. Prince, A. Cooper, and S. A. Khader (2017). Tuberc. Tuber. Bacillus. 2017, 33–72.

    Article  Google Scholar 

  31. C. Yang, Z. Daoping, X. Xiaoping, L. Jing, and Z. Chenglong (2019). J. Microencapsul. 37, 77–90.

    Article  Google Scholar 

  32. M. Komiyama, T. Mori, and K. Ariga (2018). Bull. Chem. Soc. Jpn. 91, 1075–1111.

    Article  CAS  Google Scholar 

  33. H. Lee, M. Y. Lee, S. H. Bhang, B. S. Kim, Y. S. Kim, J. H. Ju, K. S. Kim, and S. K. Hahn (2014). ACS Nano. 8, 4790–4798.

    Article  CAS  Google Scholar 

  34. S. D. Vita, F. Zaja, S. Sacco, A. D. Candia, R. Fanin, and G. Ferraccioli (2002). Arthr. Rheum. 46, 2029–2033.

    Article  Google Scholar 

  35. B. Marston, A. Palanichamy, and J. H. Anolik (2010). Curr. Opin. Rheumatol. 22, 307.

    Article  CAS  Google Scholar 

  36. J. Kim, H. Y. Kim, S. Y. Song, S. H. Go, H. S. Sohn, S. Baik, M. Soh, K. Kim, D. Kim, H. C. Kim, and N. Lee (2019). ACS Nano. 13, 3206–3217.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the Key Research and Development Program of Shaanxi Province (No. 2019-SF-194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Zhang, J., Liu, Y. et al. Engineering Mucic Acid Loaded Polyethylenimine@GoldNanoparticles for Improving the Treatment of Rheumatoid Arthritis. J Clust Sci 33, 2419–2427 (2022). https://doi.org/10.1007/s10876-021-02159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02159-5

Keywords

Navigation