Skip to main content
Log in

Influence of Ag Doped MoO3 Nanoparticles in the Seedling Growth and Inhibitory Action Against Microbial Organisms

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein we report the hydrothermal synthesis, characterization and biological applications of h-MoO3 and silver doped MoO3 nanoparticles (NPs). The phase formations of the synthesized NPs were identified using X-Ray diffraction studies and vibrational spectral studies. The average crystallite size of the NPs tends to decrease with increase in doping concentration. The surface morphology and the elemental composition of the nanoparticles were observed from SEM and EDAX analysis. The crystallite nature was obtained from HRTEM images. The band gap energies obtained from UV-DRS spectra for h-MoO3 (3.26 eV) were found to decrease as the concentration of the dopant (Ag) increases (3.22–2.76 eV). The antibacterial activity of the prepared nanoparticles was tested against some gram positive and gram negative bacterial strains viz., Staphylococcus aureus and Bacillus cereus, Citrobacter koseri and Pseudomonas aeruginosa respectively. Also their seed germination properties were studied on foxtail and finger millet seeds for a period of seven days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Prasad, A. Bhattacharyya, and Q. D. Nguyen (2017). Front. Microbiol. 8, 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  2. D. Mittal, G. Kaur, P. Singh, K. Yadav, and S. A. Ali (2020). Front. Nanotechnol. 2, 2020.

    Article  Google Scholar 

  3. I. Iavicoli, V. Leso, D. H. Beezhold, and A. A. Shvedova (2017). Toxicol. Appl. Pharmacol. 329, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Liu and R. Lal (2015). Sci. Total Environ. 514, 131.

    Article  CAS  PubMed  Google Scholar 

  5. M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S. A. Cheema, H. Ur Rehman, and M. Sanaullah (2020). Sci. Total Environ. 721, 137778.

    Article  CAS  PubMed  Google Scholar 

  6. H. Upadhyaya, L. Begum, B. Dey, P. K. Nath, and S. K. Panda (2017). J. Plant. Sci. Phytopathol. 1, 1.

    Article  Google Scholar 

  7. W. Mahakham, A. K. Sarmah, S. Maensiri, and P. Theerakulpisut (2017). Sci. Rep. 7, 1.

    Article  CAS  Google Scholar 

  8. A. Manivel, G. J. Lee, C. Y. Chen, J. H. Chen, S. H. Ma, T. L. Horng, and J. J. Wu (2015). Mater. Res. Bull. 62, 184.

    Article  CAS  Google Scholar 

  9. C. V. Ramana, I. B. Troitskaia, V. V. Atuchin, M. Ramos, and D. Ferrer (2010). J. Vac. Sci. Technol. A 28, 726.

    Article  CAS  Google Scholar 

  10. J. Song, X. Ni, L. Gao, and H. Zheng (2007). Mater. Chem. Phys. 102, 245.

    Article  CAS  Google Scholar 

  11. L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, and C. Yu (2010). J. Phys. Chem. C 114, 21868.

    Article  CAS  Google Scholar 

  12. A. Chithambararaj and A. C. Bose (2011). J. Alloys Compd. 509, 8105.

    Article  CAS  Google Scholar 

  13. C. Chaves-Lopez, H. N. Nguyen, R. C. Oliveira, E. T. Nadres, A. Paparella, and D. F. Rodrigues (2018). Nanoscale 10, 20702.

    Article  CAS  PubMed  Google Scholar 

  14. C. Zollfrank, K. Gutbrod, P. Wechsler, and J. P. Guggenbichler (2012). Mater. Sci. Eng. C 32, 47.

    Article  CAS  Google Scholar 

  15. M. Imran, X. Sun, S. Hussain, U. Ali, M. S. Rana, F. Rasul, and C. X. Hu (2019). Int. J. Mol. Sci. 20, 3009.

    Article  CAS  PubMed Central  Google Scholar 

  16. M. R. Bindhu, M. Umadevi, G. A. Esmail, N. A. Al-Dhabi, and M. V. Arasu (2020). J. Photochem. Photobiol. B 205, 111836.

    Article  CAS  PubMed  Google Scholar 

  17. I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, and C. H. Chu (2020). Int. J. Nanomed. 15, 2555.

    Article  CAS  Google Scholar 

  18. M. S. Sadak (2019). Bull. Natl. Res. Cent. 43, 1.

    Article  Google Scholar 

  19. A. Chithambararaj and A. C. Bose (2011). Beilstein J. Nanotechnol. 2, 585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. V. Alex, A. R. Jayakrishnan, A. S. Ibrahim, K. Kamakshi, J. P. B. Silva, K. C. Sekhar, and M. J. M. Gomes (2019). Mater. Res. Express 6, 066421.

    Article  CAS  Google Scholar 

  21. A. Chithambararaj, N. S. Sanjini, S. Velmathi, and A. C. Bose (2013). Phys. Chem. Chem. Phys. 15, 14761.

    Article  CAS  PubMed  Google Scholar 

  22. S. K. Sen, S. Dutta, M. R. Khan, M. S. Manir, S. Dutta, A. Al Mortuza, and M. A. Hakim (2019). BioNanoScience 9, 873.

    Article  Google Scholar 

  23. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (John Wiley and Son. Inc., New york, London, 1963).

    Google Scholar 

  24. L. Fang, Y. Shu, A. Wang, and T. Zhang (2008). J. Cryst. Growth 310, 4593.

    Article  CAS  Google Scholar 

  25. K. Kurleto, F. Tielens, and J. Handzlik (2020). J. Phys. Chem. C 124, 3002.

    Article  CAS  Google Scholar 

  26. P. Thangasamy, V. Shanmugapriya, and M. Sathish (2018). Physica E Low Dimens. Syst. Nanostruct. 99, 189.

    Article  CAS  Google Scholar 

  27. J. V. Silveira, J. A. Batista, G. D. Saraiva, J. Mendes Filho, A. G. Souza Filho, S. Hu, and X. Wang (2010). Vib. Spectrosc. 54, 179.

    Article  CAS  Google Scholar 

  28. J. V. B. Moura, J. V. Silveira, J. G. da Silva Filho, A. G. Souza Filho, C. Luz-Lima, and P. T. C. Freire (2018). Vib. Spectrosc. 98, 98.

    Article  CAS  Google Scholar 

  29. C. C. Zhang, L. Zheng, Z. M. Zhang, R. C. Dai, Z. P. Wang, J. W. Zhang, and Z. J. Ding (2011). Phys. Status Solidi B 248, 1119.

    Article  CAS  Google Scholar 

  30. A. Chithambararaj, N. S. Sanjini, A. C. Bose, and S. Velmathi (2013). Catal Sci. Technol. 3, 1405.

    Article  CAS  Google Scholar 

  31. M. Paul, M. Dhanasekar, and S. V. Bhat (2017). Appl. Surf. Sci. 418, 113.

    Article  CAS  Google Scholar 

  32. K. S. Siddiqi, A. Rahman, H. A. Tajuddin, and A. Husen (2018). Nanoscale Res. Lett 13, 1.

    Article  Google Scholar 

  33. H. Li, Q. Cui, B. Feng, J. Wang, X. Lu, and J. Weng (2013). Appl. Surf. Sci. 284, 179.

    Article  CAS  Google Scholar 

  34. D. L. Slomberg, Y. Lu, A. D. Broadnax, R. A. Hunter, A. W. Carpenter, and M. H. Schoenfisch (2013). ACS Appl. Mater. Interfaces 5, 9322.

    Article  CAS  PubMed  Google Scholar 

  35. C. S. Ciobanu, S. L. Iconaru, M. C. Chifiriuc, A. Costescu, P. Le Coustumer, and D. Predoi (2013). BioMed Research International2013.

  36. Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez (2012). Nano Lett. 12, 4271.

    Article  CAS  PubMed  Google Scholar 

  37. A. U. Mirza, A. Kareem, S. A. Nami, M. S. Khan, S. Rehman, S. A. Bhat, and N. Nishat (2018). J. Photochem. Photobiol. B 185, 262.

    Article  CAS  PubMed  Google Scholar 

  38. P. Bhattacharya and S. Neogi (2019). Rev. Chem. Eng. 35, 861.

    Article  CAS  Google Scholar 

  39. N. Sharma, J. Kumar, S. Thakur, S. Sharma, and V. Shrivastava (2013). Drug Invent. Today 5, 50.

    Article  CAS  Google Scholar 

  40. M. Rafique, J. Jahangir, B. A. Z. Amin, M. B. Tahir, G. Nabi, M. I. Khan, and I. Sadaf (2019). J Inorg Organomet Polym Mater. 2, 2133.

    Article  Google Scholar 

  41. A. Elizabath, V. Bahadur, P. Misra, V. M. Prasad, and T. Thomas (2017). J. Pharmacogn. Phytochem. 6, 1266.

    Google Scholar 

  42. M. I. Khan, N. Fatima, M. Shakil, M. B. Tahir, K. N. Riaz, M. Rafique, and K. Mahmood (2021). Physica B Condens. 601, 412563.

    Article  CAS  Google Scholar 

  43. N. Savithramma, S. Ankanna, and G. Bhumi (2012). Nano Vision 2, 61.

    Google Scholar 

  44. S. A. Osman, D. M. Salama, M. E. Abd El-Aziz, E. A. Shaaban, and M. S. Abd Elwahed (2020). Plant Physiol. Biochem. 151, 77.

    Article  CAS  PubMed  Google Scholar 

  45. R. Prażak, A. Święciło, A. Krzepiłko, S. Michałek, and M. Arczewska (2020). Agriculture 10, 312.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the management of St. John’s College, Tirunelveli, Tamil Nadu also being our research centre for providing the lab facilities to carry out this research work. We would like to acknowledge SRM University, Chennai, Tamil Nadu, India for providing PXRD and SEM with EDX spectral analysis. We thank Dr.C. Vethi, VOC College, Tuticorin, for recording FTIR and UV-DRS spectra. Also we would like to thank the Department of Nanotechnology, Noorul Islam centre for higher Education, Thuckalay, Kanniyakumari, Tamil Nadu-629180, India for recording Raman spectra.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Joel or S. Hari Kengaram.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A.N.P., Bennie, R.B., Xavier, G.A.I. et al. Influence of Ag Doped MoO3 Nanoparticles in the Seedling Growth and Inhibitory Action Against Microbial Organisms. J Clust Sci 33, 2429–2441 (2022). https://doi.org/10.1007/s10876-021-02164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02164-8

Keywords

Navigation