Skip to main content
Log in

Correlation between thermomechanical behavior and density of UHMWPE (Ultra-High Molecular Weight PolyEthylene) reinforcements embedded in self-reinforced composites, following a parametric study of the process used

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-reinforced polymers (SRPs) show many advantages such as greater ductility, lightness, and recyclability compared to glass or carbon fiber-reinforced composites. A process from pellets to produce Self-reinforced PolyEthylene (SRPE) composites reinforced with continuous polyethylene Doyentrontex® yarns is proposed. The architecture of the reinforcement or defects in the composite can mask the effects of the process. The study then focuses on specimens reinforced between 1 and 12 yarns. The influence of process parameters on the thermomechanical behavior of SRPE and the neat PolyEthylene (PE) is investigated through tensile tests conducted at 23 and 60 °C. An optimal combination is sought to be able to consider future structural applications. The influence of the amount of reinforcement on the thermomechanical properties of SRPE has also been studied for the same process conditions. The tangent modulus and the maximum strength are the parameters most affected by the reinforcement density. The importance of yarns’ layout is also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Witten E, Mathes V, Sauer M, Kühnel M (2018) Composites market report 2018, market developments, trends, outlooks and challenges. Federation of Reinforced Plastics, Frankfurt

  2. Capiati NJ, Porter RS (1975) The concept of one polymer composites modelled with high density polyethylene. J Mater Sci. https://doi.org/10.1007/BF00554928

    Article  Google Scholar 

  3. Cabrera N, Alcock B, Loos J, Peijs T (2004) Processing of all-polypropylene composites for ultimate recyclability. In: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. https://doi.org/10.1243/146442004323085563

  4. Gao C, Meng L, Yu L, Simon GP, Liu H, Chen L, Petinakis S (2015) Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2015.07.006

    Article  Google Scholar 

  5. Hine PJ, Ward IM, Jordan ND, Olley R, Bassett DC (2003) The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polymer. https://doi.org/10.1016/S0032-3861(02)00809-1

    Article  Google Scholar 

  6. Vecchione P, Acierno D, Abbate M, Russo P (2017) Hot-compacted self reinforced polyamide 6 composite laminates. Compos B. https://doi.org/10.1016/j.compositesb.2016.11.007

    Article  Google Scholar 

  7. Schneider C, Kazemahvazi S, Åkermo M, Zenkert D (2013) Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites. Polym Test. https://doi.org/10.1016/j.polymertesting.2012.11.002

    Article  Google Scholar 

  8. Rojanapitayakorn P, Mather PT, Goldberg AJ, Weiss RA (2005) Optically transparent self-reinforced poly(ethylene terephthalate) composites: molecular orientation and mechanical properties. Polymer. https://doi.org/10.1016/j.polymer.2004.11.032

    Article  Google Scholar 

  9. Marais C, Feillard P (1992) Manufacturing and mechanical characterization of unidirectional polyethylene-fibre/polyethylene-matrix composites. Compos Sci Technol. https://doi.org/10.1016/0266-3538(92)90086-I

    Article  Google Scholar 

  10. Deng M, Shalaby SW (1997) Properties of self-reinforced ultra-high-molecular-weight polyethylene composites. Biomaterials. https://doi.org/10.1016/S0142-9612(96)00194-9

    Article  PubMed  Google Scholar 

  11. Wu CM, Lin PC, Murakami R (2017) Long-term creep behavior of self-reinforced PET composites. Express Polym Lett. https://doi.org/10.3144/expresspolymlett.2017.78

    Article  Google Scholar 

  12. Karger-Kocsis J, Bárány T (2014) Single-polymer composites (SPCs): status and future trends. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2013.12.006

    Article  Google Scholar 

  13. Stellbrink KKU, Hausser G, Steegmuller R (1999) One-component composites as functionally gradient materials. J Thermoplast Compos Mater. https://doi.org/10.1177/089270579901200303

    Article  Google Scholar 

  14. Ward IM, Hine PJ (2004) The science and technology of hot compaction. Polymer. https://doi.org/10.1016/j.polymer.2003.11.050

    Article  Google Scholar 

  15. Gao C, Yu L, Liu H, Chen L (2012) Development of self-reinforced polymer composites. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2011.09.005

    Article  Google Scholar 

  16. Russell BP, Karthikeyan K, Deshpande VS, Fleck NA (2013) The high strain rate response of ultra high molecular-weight polyethylene: from fibre to laminate. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2013.03.010

    Article  Google Scholar 

  17. Fouad H, Mourad AHI, Barton DC (2005) Effect of pre-heat treatment on the static and dynamic thermo-mechanical properties of ultra-high molecular weight polyethylene. Polym Test. https://doi.org/10.1016/j.polymertesting.2005.02.007

    Article  Google Scholar 

  18. Chukov DI, Zherebtsov DD, Olifirov LK, Torokhov VG, Maksimkin AV (2020) Comparison between self-reinforced composites based on ultra-high molecular weight polyethylene fibers and isotropic UHMWPE. Mendeleev Commun. https://doi.org/10.1016/j.mencom.2020.01.016

    Article  Google Scholar 

  19. Van der Vegt AK (2006) From polymers to plastics. VSSD, Delft

    Google Scholar 

  20. Ward IM (2004) Developments in oriented polymers, 1970–2004. Plast Rubber Compos. https://doi.org/10.1179/174328904X4864

    Article  Google Scholar 

  21. Alcock B, Peijs T (2011) Technology and development of self-reinforced polymer composites. In: Abe A, Kausch HH, Möller M, Pasch H (eds) Polymer composites—polyolefin fractionation—polymeric peptidomimetics—collagens. Springer, Berlin. https://doi.org/10.1007/12_2011_159

    Chapter  Google Scholar 

  22. Kmetty Á, Bárány T, Karger-Kocsis J (2010) Self-reinforced polymeric materials: a review. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2010.07.002

    Article  Google Scholar 

  23. Wang J, Song F, Yu M (2019) Unidirectional continuous fiber-reinforced polypropylene single-polymer composites prepared by extrusion–calendering process. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719886898

    Article  Google Scholar 

  24. Wang J, Du Z, Lian T (2018) Extrusion-calendering process of single-polymer composites based on polyethylene. Polym Eng Sci. https://doi.org/10.1002/pen.24827

    Article  Google Scholar 

  25. Wang J, Chen D, Wang S, Du Z, Jiang N, Peng J (2018) Insert injection molding of low-density polyethylene single-polymer composites reinforced with ultrahigh-molecular-weight polyethylene fabric. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705717734593

    Article  Google Scholar 

  26. Peijs T (2003) Composites for recyclability. Mater Today. https://doi.org/10.1016/S1369-7021(03)00428-0

    Article  Google Scholar 

  27. Kim KJ, Yu WR, Harrison P (2008) Optimum consolidation of self-reinforced polypropylene composite and its time-dependent deformation behavior. Compos A. https://doi.org/10.1016/j.compositesa.2008.06.005

    Article  Google Scholar 

  28. Yan RJ, Hine PJ, Ward IM, Olley RH, Bassett DC (1997) The hot compaction of SPECTRA gel-spun polyethylene fibre. J Mater Sci. https://doi.org/10.1023/A:1018647401619

    Article  Google Scholar 

  29. Teishev A, Incardona S, Migliaresi C, Marom G (1993) Polyethylene fibers-polyethylene matrix composites: preparation and physical properties. J Appl Polym Sci. https://doi.org/10.1002/app.1993.070500314

    Article  Google Scholar 

  30. Devaux E, Cazé C (1999) Composites of UHMW polyethylene fibres in a LD polyethylene matrix. I. Processing conditions. Compos Sci Technol. https://doi.org/10.1016/S0266-3538(98)00090-6

    Article  Google Scholar 

  31. Roiron C, Lainé E, Grandidier JC, Olivier D, Garois N, Vix C (2020) Study of the thermomechanical behavior of UHMWPE yarns under different loading paths. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106717

    Article  Google Scholar 

  32. Barham PJ, Keller A (1985) High-strength polyethylene fibres from solution and gel spinning. J Mater Sci. https://doi.org/10.1007/BF00556059

    Article  Google Scholar 

  33. Alcock B, Cabrera NO, Barkoula NM, Loos J, Peijs T (2006) The mechanical properties of unidirectional all-polypropylene composites. Compos A. https://doi.org/10.1016/j.compositesa.2005.07.002

    Article  Google Scholar 

  34. G’Sell C, Hiver JM, Dahoun A, Souahi A (1992) Video-controlled tensile testing of polymers and metals beyond the necking point. J Mater Sci. https://doi.org/10.1007/BF01105270

    Article  Google Scholar 

  35. Lainé E, Bouvy C, Grandidier JC, Vaes G (2019) Methodology of accelerated characterization for long-term creep prediction of polymer structures to ensure their service life. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.106050

    Article  Google Scholar 

  36. Roiron C, Lainé E, Grandidier JC, Olivier D, Garois N, Karam S (2019) Caractérisation du comportement d’un composite PolyÉthylène Auto-Renforcé, Conference Journées Nationales des Composites. Available on https://jnc21.sciencesconf.org/235918/document

  37. Greco A, Ferrari F, Buccoliero MG, Trono G (2019) Thermal and mechanical analysis of polyethylene homo-composites processed by rotational molding. Polymers. https://doi.org/10.3390/polym11030528

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kmetty Á, Bárány T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2012.09.017

    Article  Google Scholar 

  39. Zhang JM, Reynolds CT, Peijs T (2009) All-poly(ethylene terephthalate) composites by film stacking of oriented tapes. Compos A. https://doi.org/10.1016/j.compositesa.2009.08.008

    Article  Google Scholar 

  40. Teckoe J, Olley RH, Bassett DC, Hine PJ, Ward IM (1999) The morphology of woven polypropylene tapes compacted at temperatures above and below optimum. J Mater Sci. https://doi.org/10.1023/A:1004555608836

    Article  Google Scholar 

  41. Arridge RGC, Barham PJ, Keller A (1977) Self-hardening of highly oriented polyethylene. J Polym Sci Polym Phys Ed. https://doi.org/10.1002/pol.1977.180150301

    Article  Google Scholar 

  42. Peterlin A (1977) Drawing and annealing of fibrous material. J Appl Phys. https://doi.org/10.1063/1.323436

    Article  Google Scholar 

  43. Decandia F, Vittoria V, Peterlin A (1985) Time dependence of mechanical and transport properties of drawn and annealed linear polyethylene. J Polym Sci Polym Phys Ed. https://doi.org/10.1002/pol.1985.180230613

    Article  Google Scholar 

  44. Zherebtsov D, Chukov D, Statnik E, Torokhov V (2020) Hybrid self-reinforced composite materials based on ultra-high molecular weight polyethylene. Materials. https://doi.org/10.3390/ma13071739

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pennings AJ, Zwijnenburg A (1979) Longitudinal growth of polymer crystals from flowing solutions. VI. Melting behavior of continuous fibrillar polyethylene crystals. J Polym Sci Polym Phys Ed. https://doi.org/10.1002/pol.1979.180170610

    Article  Google Scholar 

  46. Shalaby SW, Deng M (1998) Self-Reinforced Ultra-High Molecular Weight Polyethylene composite medical implants. US Patent No, 5,834,113

  47. Wanyama PS (2014) Effects of consolidation parameters on creep, fatigue and dynamic mechanical behaviour of self-reinforced polypropylene composites. Kenyatta University

  48. Swolfs Y, Crauwels L, Gorbatikh L, Verpoest I (2013) The influence of weave architecture on the mechanical properties of self-reinforced polypropylene. Compos A. https://doi.org/10.1016/j.compositesa.2013.06.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Corporate R&D Department of the Total Group for its support for this research, as well as the ANRT (Association Nationale de la Recherche et de la Technologie). One part of the experimental work was partially funded by the French Government program “Investissements d'Avenir” (EQUIPEX GAP, reference ANR-11-EQPX-0018).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CR: Methodology, Validation, Investigation, Writing-original Draft, Writing-Review & Editing, Visualization. EL: Conceptualization, Writing-Review & Editing, Supervision. J-CG: Conceptualization, Writing-Review & Editing, Supervision. NG: Conceptualization, Project administration, Supervision. CV-G: Project administration.

Corresponding author

Correspondence to Coline Roiron.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roiron, C., Lainé, E., Grandidier, JC. et al. Correlation between thermomechanical behavior and density of UHMWPE (Ultra-High Molecular Weight PolyEthylene) reinforcements embedded in self-reinforced composites, following a parametric study of the process used. J Polym Res 28, 360 (2021). https://doi.org/10.1007/s10965-021-02698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02698-5

Keywords

Navigation