Skip to main content
Log in

Application of supercritical fluid in the synthesis of graphene materials: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The studies on the utilisation of supercritical fluids (SCFs) in processing chemicals and materials have garnered significant attention in the past two decades. SCFs possess both gas- and liquid-like properties that are tunable, rendering them as superior solvents for reactions and processes, for example in the delamination of graphite. SCF technologies are deemed to be potential alternatives to existing technologies for graphene production that are yet to be industrially scalable. This review features recent works on the production of graphene facilitated by SCFs, with emphasis on the conversion of graphite to graphene through exfoliation and reduction. The exfoliation processes report the yield of 6 to 27% of monolayer graphene and 3 to 25% of ≤ 5 layers of graphene, whilst the carbon-to-oxygen (C/O) ratio of graphene produced via different reduction processes ranges from 0.37 to 28.2 with interlayer spacing of 0.35 to 0.38 nm. Recent applications of gas-expanded solvents for the synthesis of graphene and the fabrication of functionalised graphene materials via SCF-aided processes are also described. In addition, a summary of the properties of common SCFs as well as the characterisation of graphene materials, such as the number of layers, C/O ratio, interlayer spacing, pore size and surface area, is included to provide insights on the process efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aissa B et al (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Frontiers in Materials 2:58

    Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    CAS  Google Scholar 

  • Amiri A et al (2018) A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem 8:40–71

    CAS  Google Scholar 

  • Andonovic B et al (2015) Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J Nanotechnol 6:2113–2122

    CAS  Google Scholar 

  • Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    CAS  Google Scholar 

  • Bahrami M, Ranjbarian S (2007) Production of micro- and nano-composite particles by supercritical carbon dioxide. J Supercritical Fluids 40(2):263–283

    CAS  Google Scholar 

  • Balaji SS et al (2019) Supercritical fluid assisted synthesis of S-doped graphene and its symmetric supercapacitor performance evaluation using different electrolytes. Synthetic Metals 255:116111

  • Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  Google Scholar 

  • Bastwros M et al (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos B Eng 60:111–118

    CAS  Google Scholar 

  • Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. The Journal of Supercritical Fluids 28(2):121–191

    CAS  Google Scholar 

  • Berciaud S et al (2009) Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett 9(1):346–352

    CAS  Google Scholar 

  • Berger C et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    CAS  Google Scholar 

  • Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    CAS  Google Scholar 

  • Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9(4):1527–1533

    Google Scholar 

  • Casiraghi C et al (2009) Raman spectroscopy of graphene edges. Nano Lett 9(4):1433–1441

    CAS  Google Scholar 

  • Chen C-Y et al (2011) Uniform dispersion of Pd nanoparticles on carbon nanostructures using a supercritical fluid deposition technique and their catalytic performance towards hydrogen spillover. J Mater Chem 21(47):19063–19068

    CAS  Google Scholar 

  • Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    CAS  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6):711–723

    CAS  Google Scholar 

  • Cruz-Silva E et al (2009) Electronic transport and mechanical properties of phosphorus-and phosphorus–nitrogen-doped carbon nanotubes. ACS Nano 3(7):1913–1921

    CAS  Google Scholar 

  • Cui X et al (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3(5):2118–2126

    CAS  Google Scholar 

  • Dayou S et al (2017) High-rate synthesis of graphene by a lower cost chemical vapor deposition route. J Nanopart Res 19(10):336

    Google Scholar 

  • Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    CAS  Google Scholar 

  • Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383(6598):313–318

    CAS  Google Scholar 

  • Fan X et al (2016) Functionalized graphene nanoplatelets from ball milling for energy applications. Curr Opin Chem Eng 11:52–58

    Google Scholar 

  • Fang Z et al (2020) Conversion of biological solid waste to graphene-containing biochar for water remediation: A critical review. Chem Eng J 390:124611

  • Fernández-Merino MJ et al (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. The Journal of Physical Chemistry C 114(14):6426–6432

    Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1):47–57

    CAS  Google Scholar 

  • Gai Y et al (2018) Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: simulation and experiment. Ultrason Sonochem 41:181–188

    CAS  Google Scholar 

  • Gao W et al (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    CAS  Google Scholar 

  • Gao H et al (2017) Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium. Chem Eng J 308:872–879

    CAS  Google Scholar 

  • Gao H, Hu G (2016) Graphene production via supercritical fluids. RSC Adv 6(12):10132–10143

    CAS  Google Scholar 

  • Geim AK, Novoselov KS (2010) The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 11–19

    Google Scholar 

  • Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036

    CAS  Google Scholar 

  • Hadi A et al (2016) Optimization of graphene production by exfoliation of graphite in supercritical ethanol: a response surface methodology approach. The Journal of Supercritical Fluids 107:92–105

    CAS  Google Scholar 

  • Hernandez Y et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    CAS  Google Scholar 

  • Hernandez Y et al (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213

    CAS  Google Scholar 

  • Hu W-C, Hou S-S, Lin T-H (2017) Transition of carbon nanostructures in heptane diffusion flames. J Nanopart Res 19(2):82

    Google Scholar 

  • Jeon I-Y et al (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810

    Google Scholar 

  • Jeon I-Y et al (2017) Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon 116:77–83

    CAS  Google Scholar 

  • Jiao L et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240):877–880

    CAS  Google Scholar 

  • Johnson DW, Dobson BP, Coleman KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20(5):367–382

    CAS  Google Scholar 

  • Jorio A, Martins Ferreira EH, Cançado, LG, Achete CA, Capaz RB (2011) Physics and applications of graphene – experiments. InTech Publishing

  • Karamat S et al (2015) Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition. Progress in Natural Science: Materials International 25(4):291–299

    CAS  Google Scholar 

  • Kharisov, BI and Kharissova OV (2009) Carbon allotropes: metal-complex chemistry, properties and applications. Springer International Publishing

  • Kong CY et al (2012) Supercritical fluid conversion of graphene oxides. The Journal of Supercritical Fluids 61:206–211

    CAS  Google Scholar 

  • Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    CAS  Google Scholar 

  • Kudin KN et al (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    CAS  Google Scholar 

  • Kuijpers MWA et al (2002) Cavitation-induced reactions in high-pressure carbon dioxide. Science 298(5600):1969

    CAS  Google Scholar 

  • Lee XJ et al (2012) Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution. J Environ Sci 24(9):1559–1568

    CAS  Google Scholar 

  • Lee G-H et al (2013) High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340(6136):1073–1076

    CAS  Google Scholar 

  • Lee XJ et al (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    CAS  Google Scholar 

  • Lee H, Park JY (2019) Height determination of single-layer graphene on mica at controlled humidity using atomic force microscopy. Review of Scientific Instruments 90(10):103702

    Google Scholar 

  • Lei Y et al (2011) Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem 13(7):1655–1658

    CAS  Google Scholar 

  • Lerf A et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    CAS  Google Scholar 

  • Lester E et al (2018) A proposed biomass char classification system. Fuel 232:845–854

    CAS  Google Scholar 

  • Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314

    CAS  Google Scholar 

  • Li Z et al (2011a) Flame synthesis of few-layered graphene/graphite films. Chem Commun 47(12):3520–3522

    CAS  Google Scholar 

  • Li Z et al (2011b) Ethanol flame synthesis of highly transparent carbon thin films. Carbon 49(1):237–241

    CAS  Google Scholar 

  • Li L et al (2013) Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustainable Chemistry & Engineering 1(1):144–151

    CAS  Google Scholar 

  • Liu L et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6(9):8241–8249

    CAS  Google Scholar 

  • Liu L et al (2019a) Synergistic effect of supercritical CO2 and organic solvent on exfoliation of graphene: experiment and atomistic simulation studies. Phys Chem Chem Phys 21(39):22149–22157

    CAS  Google Scholar 

  • Liu Z et al (2019) Lateral size of graphene characterized by atomic force microscope. IOP Conf Ser Earth Environ Sci 252:022022

  • Liu Z, Han B (2009) Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater 21(7):825–829

    CAS  Google Scholar 

  • Liu C, Hu G, Gao H (2012) Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N. N-Dimethylformamide the Journal of Supercritical Fluids 63:99–104

    CAS  Google Scholar 

  • Lozowski D (2010) Supercritical CO2: a green solvent. Chem Eng 117(2):15

    Google Scholar 

  • Manukyan KV et al (2013) Combustion synthesis of graphene materials. Carbon 62:302–311

    CAS  Google Scholar 

  • Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2(7):2643–2662

    CAS  Google Scholar 

  • Memon NK et al (2013) Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc Combust Inst 34(2):2163–2170

    CAS  Google Scholar 

  • Meng Y, Su F, Chen Y (2016) Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Sci Rep 6:31246. https://doi.org/10.1038/srep31246

    Article  CAS  Google Scholar 

  • Min BH et al (2014) Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode. Carbon 80:446–452

    CAS  Google Scholar 

  • Mishra N et al (2016) Graphene growth on silicon carbide: a review. physica status solidi (a) 213(9):2277–2289

    CAS  Google Scholar 

  • Mondal S, Ghosh S, Raj CR (2018) Unzipping of single-walled carbon nanotube for the development of electrocatalytically active hybrid catalyst of graphitic carbon and Pd nanoparticles. ACS Omega 3(1):622–630

    CAS  Google Scholar 

  • Morales Ibarra R et al (2020) Graphene exfoliation with supercritical fluids. Carbon Letter 31:99–105

  • Mungse HP et al (2014) Hydrothermal deoxygenation of graphene oxide in sub- and supercritical water. RSC Adv 4(43):22589–22595

    CAS  Google Scholar 

  • Nakagawa T et al (2003) Reactions of supercritical alcohols with unsaturated hydrocarbons. The Journal of Supercritical Fluids 27(3):255–261

    CAS  Google Scholar 

  • National Center for Biotechnology Information (2004) PubChem compound summary for CID 6228, N,N-dimethylformamide. National Center for Biotechnology Information, Bethesda

  • National Center for Biotechnology Information (2004) PubChem annotation record for 1-methyl-2-pyrrolidinone. National Center for Biotechnology Information, Bethesda

  • Nursanto EB et al (2011) Facile synthesis of reduced graphene oxide in supercritical alcohols and its lithium storage capacity. Green Chem 13(10):2714–2718

    CAS  Google Scholar 

  • Obraztsov A et al (2007) Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45(10):2017–2021

    CAS  Google Scholar 

  • Ossler F et al (2010) Sheet-like carbon particles with graphene structures obtained from a Bunsen flame. Carbon 48(14):4203–4206

    CAS  Google Scholar 

  • Padmajan Sasikala S, Poulin P, Aymonier C (2016) Prospects of supercritical fluids in realizing graphene-based functional materials. Advanced Materials 28(14):2663–2691

    CAS  Google Scholar 

  • Pan F et al (2013) Advanced oxygen reduction electrocatalyst based on nitrogen-doped graphene derived from edible sugar and urea. ACS Appl Mater Interfaces 5(21):11108–11114

    CAS  Google Scholar 

  • Pang CH, Lester E, Wu T (2018) Influence of lignocellulose and plant cell walls on biomass char morphology and combustion reactivity. Biomass Bioenerg 119:480–491

    CAS  Google Scholar 

  • Parvez AM et al (2016) Effect of the addition of different waste carbonaceous materials on coal gasification in CO2 atmosphere. Fuel Process Technol 149:231–238

    CAS  Google Scholar 

  • Pruna A, Pullini D, Busquets D (2013) Influence of synthesis conditions on properties of green-reduced graphene oxide. J Nanopart Res 15(5):1605

    Google Scholar 

  • Qu L et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    CAS  Google Scholar 

  • Rangappa D et al (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chemistry – A European Journal 16(22):6488–6494

    CAS  Google Scholar 

  • Rangappa D, Jang JH, Honma I (2011) Graphene - Synthesis, Characterization, Properties and Applications. BoD – Books on Demand

  • Ray AK et al (2012) Preparation and characterization of graphene and Ni-decorated graphene using flower petals as the precursor material. Carbon 50(11):4123–4129

    CAS  Google Scholar 

  • Ross DS, Blessing JE (1979) Alcohols as H-donor media in coal conversion. 2 Base-promoted H-donation to coal by methyl alcohol. Fuel 58(6):438–442

    CAS  Google Scholar 

  • Ruan G et al (2011) Growth of graphene from food, insects, and waste. ACS Nano 5(9):7601–7607

    CAS  Google Scholar 

  • Salem ML et al (2020) Superparamagnetic graphene oxide/magnetite nanocomposite delivery system for doxorubicin-induced distinguished tumor cell cycle arrest and apoptosis. J Nanopart Res 22(8):219

    CAS  Google Scholar 

  • Sasikala SP et al (2016) Simultaneous graphite exfoliation and N doping in supercritical ammonia. ACS Appl Mater Interfaces 8(45):30964–30971

    CAS  Google Scholar 

  • Sasikala SP et al (2018) An effective in situ reduction strategy assisted by supercritical fluids for the preparation of graphene - polymer composites. Carbon 139:572–580

    CAS  Google Scholar 

  • Seo M et al (2013) Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon 64:207–218

    CAS  Google Scholar 

  • Serhatkulu GK, Dilek C, Gulari E (2006) Supercritical CO2 intercalation of layered silicates. The Journal of Supercritical Fluids 39(2):264–270

    CAS  Google Scholar 

  • Shearer CJ et al (2016) Accurate thickness measurement of graphene. Nanotechnology 27(12):125704

    Google Scholar 

  • Shen J et al (2012) One-step solid state preparation of reduced graphene oxide. Carbon 50(6):2134–2140

    CAS  Google Scholar 

  • Shin HJ et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19(12):1987–1992

    CAS  Google Scholar 

  • Sim HS et al (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346

    CAS  Google Scholar 

  • Singh V et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271

    CAS  Google Scholar 

  • Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1–3):56–59

    CAS  Google Scholar 

  • Song N et al (2016) Green production of pristine graphene using fluid dynamic force in supercritical CO2. Chem Eng J 298:198–205

    CAS  Google Scholar 

  • Stankovich S et al (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    CAS  Google Scholar 

  • Sun Z et al (2019) Supercritical fluid-facilitated exfoliation and processing of 2D materials. Advanced Science 6(18):1901084

    CAS  Google Scholar 

  • Suresh Balaji S, Karnan M, Sathish M (2018) Supercritical fluid processing of N-doped graphene and its application in high energy symmetric supercapacitor. International Journal of Hydrogen Energy 43(8):4044–4057

    CAS  Google Scholar 

  • Szabó T et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Google Scholar 

  • Tao H et al (2017) Scalable exfoliation and dispersion of two-dimensional materials – an update. Phys Chem Chem Phys 19(2):921–960

    CAS  Google Scholar 

  • Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487

    CAS  Google Scholar 

  • Tiwary CS et al (2015) Chemical-free graphene by unzipping carbon nanotubes using cryo-milling. Carbon 89:217–224

    CAS  Google Scholar 

  • Tomai T, Kawaguchi Y, Honma I (2012) Nanographene production from platelet carbon nanofiber by supercritical fluid exfoliation. Applied Physics Letters 100(23):233110

    Google Scholar 

  • Torres D et al (2017) Enhanced reduction of few-layer graphene oxide via supercritical water gasification of glycerol. Nanomaterials (basel, Switzerland) 7(12):447

    Google Scholar 

  • Tung VC et al (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4(1):25

    CAS  Google Scholar 

  • Tuz Johra, F, Lee J, and Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887

  • Wang X et al (2009) Large-scale synthesis of few-layered graphene using CVD. Chem Vap Deposition 15(1–3):53–56

    CAS  Google Scholar 

  • Wang W et al (2018) Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2. Ind Eng Chem Res 57(49):16701–16708

    CAS  Google Scholar 

  • Wang D, Montané D, Chornet E (1996) Catalytic steam reforming of biomass-derived oxygenates: acetic acid and hydroxyacetaldehyde. Appl Catal A 143(2):245–270

    CAS  Google Scholar 

  • World Helth Organization (2001) N-Methyl-2-pyrrolidone. In: Concise International Chemical Assessment Document. The World Health Organization, Lund

  • Wu N et al (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22(33):17254–17261

    CAS  Google Scholar 

  • Wu B, Yang X (2011) A molecular simulation of interactions between graphene nanosheets and supercritical CO2. J Colloid Interface Sci 361(1):1–8

    CAS  Google Scholar 

  • Xu G et al (2012) Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes. Ind Eng Chem Res 51(44):14390–14398

    CAS  Google Scholar 

  • Xu S et al (2015) Reverse-micelle-induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2. Chem Mater 27(9):3262–3272

    CAS  Google Scholar 

  • Xu Q-Q et al (2018) Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing. Carbon 135:180–186

    CAS  Google Scholar 

  • Yan J et al (2016) Influence of minerals on the thermal processing of bamboo with a suite of carbonaceous materials. Fuel 180:256–262

    CAS  Google Scholar 

  • Yannopoulos SN et al (2012) CO2 laser-induced growth of epitaxial graphene on 6H-SiC(0001). Adv Func Mater 22(1):113–120

    CAS  Google Scholar 

  • Yi M et al (2012) A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J Nanopart Res 14(8):1003

    Google Scholar 

  • Yi M et al (2013) Controllable functionalization and wettability transition of graphene-based films by an atomic oxygen strategy. J Nanopart Res 15(8):1811

    Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 3(22):11700–11715

    CAS  Google Scholar 

  • Yu Q et al (2008) Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93(11):113103

    Google Scholar 

  • Zhang J et al (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    CAS  Google Scholar 

  • Zhang X, Heinonen S, Levänen E (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv 4(105):61137–61152

    CAS  Google Scholar 

  • Zhao J et al (2012) Decoration of ultrafine platinum-ruthenium particles on functionalized graphene sheets in supercritical fluid and their electrocatalytic property. J Nanopart Res 14(9):935

    Google Scholar 

  • Zhao J et al (2014) Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate. CrystEngComm 16(10):2001–2008

    CAS  Google Scholar 

  • Zhao H et al (2015) Screening of metal oxidesfor Hg0capture. Energy Procedia 75:2421–2426

    CAS  Google Scholar 

  • Zhao H et al (2016) Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture. Fuel 181:1089–1094

    CAS  Google Scholar 

  • Zhao H et al (2020) MoO3-adjusted δ-MnO2 nanosheet for catalytic oxidation of Hg0 to Hg2+. Appl Catal B: Environ 263:117829

  • Zheng X et al (2012) High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Adv 2(28):10632–10638

    CAS  Google Scholar 

  • Zhou Y et al (2015) One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction. Green Chem 17(6):3552–3560

    CAS  Google Scholar 

  • Zhu Y et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  Google Scholar 

Download references

Funding

The authors gratefully express gratitude to all parties which have contributed towards the success of this project, both financially and technically, especially the S&T Innovation 2025 Major Special Programme (grant number 2018B10022) and the Ningbo Natural Science Foundation Programme (grant number 2018A610069) funded by the Ningbo Science and Technology Bureau, China, as well as the UNNC FoSE Faculty Inspiration Grant, China. The Zhejiang Provincial Department of Science and Technology is also acknowledged for this research under its Provincial Key Laboratory Programme (2020E10018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Heng Pang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y.X., Yew, M., Yan, Y. et al. Application of supercritical fluid in the synthesis of graphene materials: a review. J Nanopart Res 23, 204 (2021). https://doi.org/10.1007/s11051-021-05254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-021-05254-w

Keywords

Navigation