Skip to main content
Log in

The mechanical influence of bone spicules in the osteochondral junction: A finite element modelling study

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

While much has been done to study how cartilage responds to mechanical loading, as well as modelling such responses, arguably less has been accomplished around the mechanics of the cartilage–bone junction. Previously, it has been reported that the presence of bony spicules invading the zone of calcified cartilage, preceded the formation of new subchondral bone and the advancing of the cement line (Thambyah and Broom in Osteoarthr Cartil 17:456–463, 2009). In this study, the morphology and frequency of bone spicules in the cartilage–bone interface of osteochondral beams subjected to three-point bending were modelled, and the results are discussed within the context of biomechanical theories on bone formation. It was found that the stress and strain magnitudes, and their distribution were sensitive to the presence and number of spicules. Spicule numbers and shape were shown to affect the strain energy density (SED) distribution in the areas of the cement line adjacent to spicules. Stresses, strains and SED analyses thus provided evidence that the mechanical environment with the addition of spicules promotes bone formation in the cartilage–bone junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amir G, Pirie CJ, Rashad S, Revell PA (1992) Remodelling of subchondral bone in osteoarthritis: a histomorphometric study. J Clin Pathol 45(11):990–992

    Article  Google Scholar 

  • Bellido M, Lugo L, Roman-Blas JA, Castañeda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont G (2010) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 12(4):R152

    Article  Google Scholar 

  • Betts DC, Müller R (2014) Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol (lausanne) 10(5):211

    Google Scholar 

  • Biewener AA (1991) Musculoskeletal design in relation to body size. J Biomech 24(Suppl 1):19–29

    Article  Google Scholar 

  • Biewener AA, Taylor CR (1986) Bone strain: a determinant of gait and speed? J Exp Biol 123:383–400

    Article  Google Scholar 

  • Biewener AA, Thomason J, Goodship A, Lanyon LE (1983) Bone stress in the horse forelimb during locomotion at different gaits: a comparison of two experimental methods. J Biomech 16(8):565–576

    Article  Google Scholar 

  • Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8(11):665–673

    Article  Google Scholar 

  • Carter DR, Wong M (2003) Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 358(1437):1461–1471

    Article  Google Scholar 

  • Das Gupta S, Finnilä MAJ, Karhula SS, Kauppinen S, Joukainen A, Kröger H, Korhonen RK, Thambyah A, Rieppo L, Saarakkala S (2020) Raman microspectroscopic analysis of the tissue-specific composition of the human osteochondral junction in osteoarthritis: a pilot study. Acta Biomater 106:145–155

    Article  Google Scholar 

  • Doube M, Firth EC, Boyde A (2007) Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. Osteoarthr Cartil 15(11):1283–1292

    Article  Google Scholar 

  • Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13(9):688–700

    Article  Google Scholar 

  • Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54

    Article  Google Scholar 

  • Fawns HT, Landells JW (1953) Histochemical studies of rheumatic conditions: I. observations on the fine structures of the matrix of normal bone and cartilage. Ann Rheum Dis 12(2):105–113

    Article  Google Scholar 

  • Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203(2):191–202

    Article  Google Scholar 

  • Finnilä MAJ, Thevenot J, Aho OM, Tiitu V, Rautiainen J, Kauppinen S, Nieminen MT, Pritzker K, Valkealahti M, Lehenkari P, Saarakkala S (2017) Association between subchondral bone structure and osteoarthritis histopathological grade. J Orthop Res 35(4):785–792

    Article  Google Scholar 

  • Firth EC, Delahunt J, Wichtel JW, Birch HL, Goodship AE (1999) Galloping exercise induces regional changes in bone density within the third and radial carpal bones of Thoroughbred horses. Equine Vet J 31(2):111–115

    Article  Google Scholar 

  • Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1):1–9

    Article  Google Scholar 

  • Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A (2017) Bone fracture healing in mechanobiological modeling: a review of principals and methods. Bone Rep 6:87–100

    Article  Google Scholar 

  • Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237

    Article  Google Scholar 

  • Goldring SR, Goldring MB (2016) Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol 12(11):632–644

    Article  Google Scholar 

  • Green WT Jr, Martin GN, Eanes ED, Sokoloff L (1970) Microradiographic study of the calcified layer of articular cartilage. Arch Pathol 90(2):151–158

    Google Scholar 

  • Halonen KS, Mononen ME, Jurvelin JS, Töyräs J, Korhonen RK (2013) Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage—a 3D finite element study of stresses and strains in human knee joint. J Biomech 46(6):1184–1192

    Article  Google Scholar 

  • Hargrave‐Thomas EJ, Thambyah A (2021) The micro and ultrastructural anatomy of bone spicules found in the osteochondral junction of bovine patellae with early joint degeneration. J Anat 00:1–13. https://doi.org/10.1111/joa.13518

    Article  Google Scholar 

  • Hargrave-Thomas EJ, Thambyah A, McGlashan SR, Broom ND (2013) The bovine patella as a model of early osteoarthritis. J Anat 223(6):651–664

    Article  Google Scholar 

  • Hargrave-Thomas EJ, van Sloun F, Dickinson M, Broom N, Thambyah A (2015) Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthritis Cartilage 23(10):1755–1762

    Article  Google Scholar 

  • Hosseini SM, Wilson W, Ito K, van Donkelaar CC (2014) A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Osteoarthr Cartil 22(1):95–103

    Article  Google Scholar 

  • Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156. https://doi.org/10.1046/j.1469-7580.2000.19720145.x

    Article  Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706

    Article  Google Scholar 

  • Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC (2010) In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthr Cartil 18(5):691–698

    Article  Google Scholar 

  • Jacob B, Jüllig M, Middleditch M, Payne L, Broom N, Sarojini V, Thambyah A (2018) protein levels and microstructural changes in localized regions of early cartilage degeneration compared with adjacent intact cartilage. Cartilage 28:1947603518809401

    Google Scholar 

  • Julkunen P, Wilson W, Isaksson H, Jurvelin JS, Herzog W, Korhonen RK (2013) A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. Comput Math Methods Med. 2013:326150

    Article  Google Scholar 

  • Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL, Lu HH (2014) FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age. J Bone Miner Res 29(12):2643–2652

    Article  Google Scholar 

  • Ko FC, Dragomir C, Plumb DA, Goldring SR, Wright TM, Goldring MB, van der Meulen MC (2013) In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae. Arthritis Rheum 65(6):1569–1578

    Article  Google Scholar 

  • Kwan Tat S, Amiable N, Pelletier JP, Boileau C, Lajeunesse D, Duval N, Martel-Pelletier J (2009) Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (oxford) 48(12):1482–1490

    Article  Google Scholar 

  • Lane LB, Bullough PG (1980) Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J Bone Joint Surg Br 62(3):372–375

    Article  Google Scholar 

  • Linn FC (1967) Lubrication of animal joints: I. The arthrotripsometer. J Bone Joint Surg Am 49(6):1079–1098

    Article  Google Scholar 

  • Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49. https://doi.org/10.1038/nrrheum.2010.197

    Article  Google Scholar 

  • Malekipour F, Oetomo D, Lee PV (2017) Subchondral bone microarchitecture and failure mechanism under compression: a finite element study. J Biomech 11(55):85–91

    Article  Google Scholar 

  • Mente PL, Lewis JL (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12(5):637–647

    Article  Google Scholar 

  • Milentijevic D, Torzilli PA (2005) Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage. J Biomech 38(3):493–502

    Article  Google Scholar 

  • Mononen ME, Jurvelin JS, Korhonen RK (2015) Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Engin 18(2):141–152

    Article  Google Scholar 

  • Mori S, Harruff R, Burr DB (1993) Microcracks in articular calcified cartilage of human femoral heads. Arch Pathol Lab Med 117(2):196–198

    Google Scholar 

  • Mukherjee S, Nazemi M, Jonkers I, Geris L (2020) Use of computational modeling to study joint degeneration: a review. Front Bioeng Biotechnol 8:93

    Article  Google Scholar 

  • Natoli RM, Scott CC, Athanasiou KA (2008) Temporal effects of impact on articular cartilage cell death, gene expression, matrix biochemistry, and biomechanics. Ann Biomed Eng 36(5):780–792

    Article  Google Scholar 

  • Nickien M, Heuijerjans A, Ito K, van Donkelaar CC (2018) Comparison between in vitro and in vivo cartilage overloading studies based on a systematic literature review. J Orthop Res 36(8):2076–2086

    Article  Google Scholar 

  • Nunes GS, Scattone Silva R, Dos Santos AF, Fernandes RAS, Serrão FV, de Noronha M (2018) Methods to assess patellofemoral joint stress: a systematic review. Gait Posture 61:188–196

    Article  Google Scholar 

  • Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37(4):324–332

    Article  Google Scholar 

  • Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196

    Google Scholar 

  • Perren SM (2002) Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 84(8):1093–1110

    Article  Google Scholar 

  • Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40

    Article  Google Scholar 

  • Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1(7749):519–522

    Article  Google Scholar 

  • Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2(3):221–234

    Article  Google Scholar 

  • Radin EL, Burr DB, Caterson B, Fyhrie D, Brown TD, Boyd RD (1991) Mechanical determinants of osteoarthrosis. Semin Arthritis Rheum 21(3 Suppl 2):12–21

    Article  Google Scholar 

  • Rahn BA, Gallinaro P, Baltensperger A, Perren SM (1971) Primary bone healing An experimental study in the rabbit. J Bone Joint Surg Am. 53(4):783–786

    Article  Google Scholar 

  • Rubin CT, Lanyon LE (1982) Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog. J Exp Biol 101:187–211

    Article  Google Scholar 

  • Scheuren AC, Vallaster P, Kuhn GA, Paul GR, Malhotra A, Kameo Y, Müller R (2020) Mechano-regulation of trabecular bone adaptation is controlled by the local in vivo environment and logarithmically dependent on loading frequency. Front Bioeng Biotechnol 8:566346

    Article  Google Scholar 

  • Sokoloff L (1993) Microcracks in the calcified layer of articular cartilage. Arch Pathol Lab Med 117(2):191–195

    Google Scholar 

  • Stender ME, Carpenter RD, Regueiro RA, Ferguson VL (2016) An evolutionary model of osteoarthritis including articular cartilage damage, and bone remodeling in a computational study. J Biomech 49(14):3502–3508

    Article  Google Scholar 

  • Teichtahl AJ, Wluka AE, Wijethilake P, Wang Y, Ghasem-Zadeh A, Cicuttini FM (2015) Wolff’s law in action: a mechanism for early knee osteoarthritis. Arthritis Res Ther 17(1):207

    Article  Google Scholar 

  • Thambyah A (2007) Contact stresses in both compartments of the tibiofemoral joint are similar even when larger forces are applied to the medial compartment. Knee 14(4):336–338

    Article  Google Scholar 

  • Thambyah A, Broom N (2009) On new bone formation in the pre-osteoarthritic joint. Osteoarthr Cartil 17(4):456–463

    Article  Google Scholar 

  • Thambyah A, Goh JC, De SD (2005) Contact stresses in the knee joint in deep flexion. Med Eng Phys 27(4):329–335

    Article  Google Scholar 

  • Thambyah A, Zhao JY, Bevill SL, Broom ND (2012) Macro-, micro- and ultrastructural investigation of how degeneration influences the response of cartilage to loading. J Mech Behav Biomed Mater 5(1):206–215

    Article  Google Scholar 

  • Unsworth A, Dowson D, Wright V (1975) Some new evidence on human joint lubrication. Ann Rheum Dis 34(4):277–285

    Article  Google Scholar 

  • Weng LH, Wang CJ, Ko JY, Sun YC, Wang FS (2010) Control of Dkk-1 ameliorates chondrocyte apoptosis, cartilage destruction, and subchondral bone deterioration in osteoarthritic knees. Arthritis Rheum 62(5):1393–1402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arjmandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandi, M., Kelly, P.A. & Thambyah, A. The mechanical influence of bone spicules in the osteochondral junction: A finite element modelling study. Biomech Model Mechanobiol 20, 2335–2351 (2021). https://doi.org/10.1007/s10237-021-01510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01510-z

Keywords

Navigation