Skip to main content
Log in

On the Number of Fixed Points of Automorphisms of Vertex-Transitive Graphs

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The main result of this paper is that, if Γ is a finite connected 4-valent vertex- and edge-transitive graph, then either Γ is part of a well-understood family of graphs, or every non-identity automorphism of Γ fixes at most 1/3 of the vertices. As a corollary, we get a similar result for 3-valent vertex-transitive graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Babai: On the order of uniprimitive permutation groups, Ann. of Math. 113 (1981), 553–568.

    Article  MathSciNet  Google Scholar 

  2. L. Babai: On the automorphism groups of strongly regular graphs I, in: ITCS’14 — Proceedings of the 2014 Conference on Innovations in Theoretical Computer Science, 359–368, ACM, New York, 2014.

    Google Scholar 

  3. L. Babai: On the automorphism groups of strongly regular graphs II, J. Algebra 421 (2015), 560–578.

    Article  MathSciNet  Google Scholar 

  4. L. Babai: Graph Isomorphism in Quasipolynomial Time, arXiv:1512.03547v2.

  5. W. Bosma, J. Cannon and C. Playoust: The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265.

    Article  MathSciNet  Google Scholar 

  6. T. Burness: Fixed point ratios in actions of finite classical groups I, J. Algebra 309 (2007), 69–79.

    Article  MathSciNet  Google Scholar 

  7. T. Burness: Fixed point ratios in actions of finite classical groups IV, J. Algebra 314 (2007), 749–788.

    Article  MathSciNet  Google Scholar 

  8. M. Conder: Bi-Cayley graphs, https://mast.queensu.ca/~wehlau/Herstmonceux/HerstTalks/Conder.pdf.

  9. M. Conder and G. Verret: Edge-transitive graphs of small order and the answer to a 1967 question by Folkman, Algebraic Combinatorics 2 (2019), 1275–1284.

    Article  MathSciNet  Google Scholar 

  10. M. Conder: https://www.math.auckland.ac.nz/~conder/symmcubic10000list.txt.

  11. M. Conder and P. Dobcsányi: Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput. 40 (2002), 41–63.

    MathSciNet  MATH  Google Scholar 

  12. M. Conder and P. Lorimer: Automorphism groups of symmetric graphs of valency 3, J. Combin. Theory Ser. B 47 (1989).

  13. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson: Atlas of finite groups, Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985.

    MATH  Google Scholar 

  14. D. Djoković: A class of finite group-amalgams, Proc. Amer. Math. Soc. 80 (1980), 22–26.

    Article  MathSciNet  Google Scholar 

  15. A. Gardiner and C. E. Praeger: A characterization of certain families of 4-valent symmetric graphs, European J. Combin. 15 (1994), 383–397.

    Article  MathSciNet  Google Scholar 

  16. S. Guest, J. Morris, C. E. Praeger and P. Spiga: On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc. 367 (2015), 7665–7694.

    Article  MathSciNet  Google Scholar 

  17. R. Guralnick and K. Magaard: On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), 127–145.

    Article  MathSciNet  Google Scholar 

  18. R. Jajcay, P. Potočnik and S. Wilson: The Praeger-Xu Graphs: Cycle Structures, Maps and Semitransitive Orientations, Acta Mathematica Universitatis Comenianae 88 (2019), 269–291.

    MathSciNet  MATH  Google Scholar 

  19. P. Kleidman and M. Liebeck: The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  20. R. Lawther, M. W. Liebeck and G. M. Seitz: Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific Journal of Mathematics 205 (2002), 393–464.

    Article  MathSciNet  Google Scholar 

  21. F. Lehner, P. Potočnik and P. Spiga: On fixity of arc transitive graphs, Science China Mathematics, DOI:https://doi.org/10.1007/s11425-020-1825-1.

  22. M. Liebeck and J. Saxl: Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfuces, Proc. London Math. Soc. (3) 63 (1991), 266–314.

    Article  MathSciNet  Google Scholar 

  23. M. W. Liebeck and A. Shalev: Simple groups, permutation groups, and probability, J. Amer. Math. Soc. 12 (1999), 497–520.

    Article  MathSciNet  Google Scholar 

  24. A. Malnič, R. Nedela and M. Škoviera: Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000), 927–947.

    Article  MathSciNet  Google Scholar 

  25. P. Potočnik: A list of 4-valent 2-arc-transitive graphs and finite faithful amalgams of index (4, 2), Europ. J. Comb. 30 (2009), 1323–1336.

    Article  MathSciNet  Google Scholar 

  26. P. Potočnik and P. Spiga: On minimal degree of transitive permutation groups with stabiliser being a 2-group, Journal of Group Theory 24 (2021), 619–634.

    Article  MathSciNet  Google Scholar 

  27. P. Potočnik, P. Spiga and G. Verret: Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs, J. Comb. Theory Ser. B 111 (2015), 148–180.

    Article  MathSciNet  Google Scholar 

  28. P. Potočnik, P. Spiga and G. Verret: Cubic vertex-transitive graphs on up to 1280 vertices, J. Symbolic Comput. 50 (2013), 465–477.

    Article  MathSciNet  Google Scholar 

  29. P. Potočnik, P. Spiga and G. Verret: A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two, Ars Math. Contemp. 8 (2015), 133–148.

    Article  MathSciNet  Google Scholar 

  30. P. Potočnik, P. Spiga and G. Verret: Groups of order at most 6,000 generated by two elements, one of which is an involution, and related structures, Symmetries in Graphs, Maps, and Polytopes, in: 5th SIGMAP Workshop, West Malvern, UK, July 2014, edited by Jozef Širáň and Robert Jajcay, Springer Proceedings in Mathematics & Statistics, 273–301.

  31. P. Potočnik and G. Verret: On the vertex-stabiliser in arc-transitive digraphs, J. Combin. Theory Ser. B. 100 (2010), 497–509.

    Article  MathSciNet  Google Scholar 

  32. P. Potočnik and J. Vidali: Girth-regular graphs, Ars Math. Contemp. 17 (2019), 249–368.

    Article  MathSciNet  Google Scholar 

  33. P. Potočnik and S. Wilson: Tetravalent edge-transitive graphs of girth at most 4, J. Combinatorial Theory Ser. B 97 (2007), 217–236.

    Article  MathSciNet  Google Scholar 

  34. P. Potočnik and S. Wilson: Recipes for Edge-Transitive Tetravalent Graphs, Art Disc. Appl. Math. 3 (2020), #P1.08.

    Article  MathSciNet  Google Scholar 

  35. C. E. Praeger: Highly Arc Transitive Digraphs, Europ. J. Combin. 10 (1989), 281–292.

    Article  MathSciNet  Google Scholar 

  36. C. E. Praeger and M. Y. Xu: A characterization of a class of symmetric graphs of twice prime valency, European J. Combin. 10 (1989), 91–102.

    Article  MathSciNet  Google Scholar 

  37. C. E. Praeger: An O’Nan-Scott Theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. Lond. Math. Soc. (2) 47 (1993), 227–239.

    Article  MathSciNet  Google Scholar 

  38. A. Ramos Rivera and P. Šparl: New structural results on tetravalent half-arc-transitive graphs, J. Combin. Theory Ser. B 135 (2019), 256–278.

    Article  MathSciNet  Google Scholar 

  39. C. C. Sims: Graphs and finite permutation groups, Math. Zeit. 95 (1967), 76–86.

    Article  MathSciNet  Google Scholar 

  40. W. T. Tutte: On a family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474.

    Article  MathSciNet  Google Scholar 

  41. A. V. Vasil’ev and V. D. Mazurov: Minimal permutation representations of finite simple orthogonal groups (Russian, with Russian summary), Algebra i Logika 33 (1994), 603–627; English translation Algebra and Logic 33 (1994), 337–350.

    Google Scholar 

  42. R. Weiss: Presentation for (G,s)-transitive graphs of small valency, Math. Proc. Philos. Soc. 101 (1987), 7–20.

    Article  MathSciNet  Google Scholar 

  43. R. A. Wilson: Maximal subgroups of sporadic groups, Finite simple groups: thirty years of the atlas and beyond, Contemp. Math. 694, Amer. Math. Soc., Providence, RI, 2017.

    Google Scholar 

  44. R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbott: ATLAS of Finite Group Representations — Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Spiga.

Additional information

The first-named author gratefully acknowledges the support of the Slovenian Research Agency ARRS, core funding programme P1-0294 and research project J1-1691.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potočnik, P., Spiga, P. On the Number of Fixed Points of Automorphisms of Vertex-Transitive Graphs. Combinatorica 41, 703–747 (2021). https://doi.org/10.1007/s00493-020-4509-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-020-4509-y

Mathematics Subject Classification (2010)

Navigation