Skip to main content
Log in

Rotational and translational diffusion of colloidal ellipsoids in bulk and at surfaces

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We studied the diffusion of ellipsoidal colloids by using a combination of single-particle tracking (SPT) and differential dynamic microscopy (DDM). The micrometer-sized polystyrene particles have an aspect ratio of ≈ 4.3. SPT provides the particle trajectories and translation diffusion coefficient of the particles. DDM analyses appropriate for anisotropic particles were then used to extract the rotational diffusion coefficient of the particles. The results matched well with the theoretical prediction of translational and rotational diffusion coefficients for ellipsoids in the bulk. We extended our method to surface bound particles, which shows that rotation slowed by a larger amount compared to translation. This can be explained qualitatively by assuming heterogeneity of viscous and hydrodynamic forces experienced by surface bound particles. The research will be useful to study the viscous friction experienced by anisotropic colloids in complex fluids and surface friction at chemically or topologically modified substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsuoka H, Morikawa H, Yamaoka H (1996) Rotational diffusion of ellipsoidal latex particles in dispersion as studied by depolarized dynamic light scattering. Colloids Surfaces A: Physicochem Eng Aspects 109:137–145

    Article  CAS  Google Scholar 

  2. Lehner D, Lindner H, Glatter O (2000) Determination of the translational and rotational diffusion coefficients of rodlike particles using depolarized dynamic light scattering. Langmuir 16:1689–1695

    Article  CAS  Google Scholar 

  3. Cush R, Dorman D, Russo PS (2004) Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules 37:9577–9584

    Article  CAS  Google Scholar 

  4. Han Y, Alsayed AM, Nobili M, Zhang J, Lubensky TC, Yodh AG (2006) Brownian motion of an ellipsoid. Science 314:624–630

    Google Scholar 

  5. Tsay JM, Doose S, Weiss S (2006) Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy. J Am Chem Soc 128:1639–1647

    Article  CAS  Google Scholar 

  6. Kuipers BW, Van de Ven MC, Baars RJ, Philipse AP (2012) Simultaneous measurement of rotational and translational diffusion of anisotropic colloids with a new integrated setup for fluorescence recovery after photobleaching. J Phys Condens Matter 24:245101

  7. Wilcoxon J, Schurr JM (1983) Dynamic Light scattering from thin rigid rods: anisotropy of translational diffusion of tobacco mosaic virus. Biopolymers 22:849–867

    Article  CAS  Google Scholar 

  8. Alam S, Mukhopadhyay A (2014) Translational and rotational diffusions of nanorods within semidilute and entangled polymer solutions. Macromolecules 47:6919–6924

    Article  CAS  Google Scholar 

  9. Anthony SM, Kim M, Granick S (2008) Translation-rotation decoupling of colloidal clusters of various symmetries. J Chem Phys 129:244701

  10. Stuckert R, Plüisch CS, Wittemann A (2018)  Experimental assessment and model validation on how shape determines sedimentation and diffusion of colloidal particles. Langmuir 34:13339–13351

    Article  CAS  Google Scholar 

  11. Chakrabarty A, Konya A, Wang F, Selinger JV, Sun K, Wei Q-H (2013) Brownian motion of boomerang colloidal particles. Phys Rev Lett 111:160603

  12. Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102

  13. Berne BJ, Pecora R (2000) Dynamic Light Scattering New York: Dover

  14. Shokeen N, Issa C, Mukhopadhyay A (2017) Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions. Appl Phys Lett 111:263703

  15. Edera P, Bergamini D, Trappe V, Giavazzi F, Cerbino R (2017) Differential dynamic microscopy microrheology of soft materials: a tracking-free determination of the frequency-dependent loss and storage moduli. Phys Rev Materials 1:073804

  16. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251

    Article  CAS  Google Scholar 

  17. Bayles AV, Squires TM, Helgeson ME (2016) Dark-field differential dynamic microscopy. Soft Matter 12:2440–2452

    Article  CAS  Google Scholar 

  18. Reufer M, Martinez VA, Schurtenberger P, Poon WCK (2012) Differential dynamic microscopy for anisotropic colloidal dynamics. Langmuir 28:4618–4624

    Article  CAS  Google Scholar 

  19. Wittmeier A, Holterhoff AL, Johnson J, Gibbs JG (2015) Rotational analysis of spherical, optically anisotropic janus particles by dynamic microscopy. Langmuir 31:10402–10410

    Article  CAS  Google Scholar 

  20. Pal A, Martinez VA, Ito TH, Arlt J, Crassous JJ, Poon WCK, Schurtenberger P (2020) Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy. Sci Adv 6:eaaw9733

  21. Ho CC, Keller A, Odell JA, Ottewill RH (1993) Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 271:469–479

    Article  CAS  Google Scholar 

  22. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single particle tracking in live cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  Google Scholar 

  23. Happel J, Brenner H (1991) Low Reynolds number hydrodynamics. Springer, Dordrecht

    Google Scholar 

  24. Giavazzi F, Edera P, Lu PJ, Cerbino R (2017) Image windowing mitigates edge effects in Differential Dynamic Microscopy. Eur Phys J E 40:97

    Article  Google Scholar 

  25. Cerbino R, Piotti D, Buscaglia M, Giavazzi F (2018) Dark field differential dynamic microscopy enables accurate characterization of the roto-translational dynamics of bacteria and colloidal clusters. J Phys: Condens Matter 30:025901

  26. Giavazzi F, Haro-Pérez C, Cerbino R (2016) Simultaneous characterization of rotational and translational diffusion of optically anisotropic particles by optical microscopy. J Phys: Condens Matter 28:195201

  27. Piazza R, Degiorgio V (1996) Rotational diffusion of hard spheres: forward depolarized light-scattering measurements and comparison to theory and simulation. J Phys: Condens Matter 8:9497–9502

  28. Shimizu H (1962) Effect of molecular shape on nuclear magnetic relaxation. J Chem Phys 37:765–778

    Article  CAS  Google Scholar 

  29. Tirado MM, Torre JGdl (1979) Translational friction coefficients of rigid, symmetric top macromolecules. Application to circular cylinders. J Chem Phys 71:2581–2587

  30. Broersma S (1960) Viscous force constant for a closed cylinder. J Chem Phys 32:1632–1635

    Article  CAS  Google Scholar 

  31. Brenner H (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int J Multiphase Flow 1:195–341

    Article  Google Scholar 

  32. Vasanthi R, Bhattacharyya S, Bagchi B (2001) Anisotropic diffusion of spheroids in liquids: slow orientational relaxation of the oblates. J Chem Phys 116

  33. Cichocki B, Jones RB (1998) Image representation of a spherical particle near a hard wall. Phys A 273:273–302

    Article  Google Scholar 

  34. Rogers SA, Lisicki M, Cichocki B, Dhont JKG, Lang PR (2012) Rotational diffusion of spherical colloids close to a wall. Phys Rev Lett 109:098305

  35. Cicerone MT, Ediger MD (1996) Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics? J Chem Phys 104:7210–7218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Michael Solomon for access to confocal set-up and useful discussion. The confocal setup is a part of the Biointerfaces Institute, University of Michigan.

Funding

Acknowledgements are made to the National Science Foundation through Grant CBET-2115827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Mukhopadhyay.

Ethics declarations

Competing interests

The authors declare no competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 519 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokeen, N., Mukhopadhyay, A. Rotational and translational diffusion of colloidal ellipsoids in bulk and at surfaces. Colloid Polym Sci 299, 1595–1603 (2021). https://doi.org/10.1007/s00396-021-04893-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04893-8

Keywords

Navigation