Skip to main content
Log in

5G-oriented Virtual Augmented Reality Scene Construction and Business Information Flow Demonstration

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Aiming at the problems of large data volume, long calculation time, and information feedback speed in traditional virtual augmented reality-based scenes, this paper constructed a virtual augmented reality scene based on 5G technology. First, based on the research of camera models and related calibration techniques, this article discusses the coordinate conversion and registration between virtual scenes and real scenes in augmented reality systems based on natural feature points. Secondly, the control mechanism of data synchronization and transmission are realized by using 5G communication technology. Then, through the approximate nearest neighbour search of the descriptor, the feature points are quickly matched. Finally, by tracking the QR-code logo black frame, the global holography matrix virtual real registration method relative to the initial image is used to calculate the camera’s posture and the fast tracking registration of the scene is realized. The experimental results prove that the scene constructed in this paper has the characteristics of real-time, wide field of view, high immersion and flexible expansion, which not only meets the requirements of matching accuracy, but also has the advantages of small calculation amount and fast calculation speed, and has good robustness and real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maas MJ, Hughes JM (2020) Virtual, augmented and mixed reality in K–12 education: a review of the literature[J]. Technol Pedagog Educ 29(2):231–249

    Article  Google Scholar 

  2. Flavián C, Ibáñez-Sánchez S, Orús C (2019) The impact of virtual, augmented and mixed reality technologies on the customer experience[J]. J Bus Res 100:547–560

    Article  Google Scholar 

  3. Gomez-Jauregui V, Manchado C, Jesús DEL et al (2019) Quantitative evaluation of overlaying discrepancies in mobile augmented reality applications for AEC/FM[J]. Adv Eng Softw 127:124–140

    Article  Google Scholar 

  4. Bursali H, Yilmaz RM (2019) Effect of augmented reality applications on secondary school students’ reading comprehension and learning permanency[J]. Comput Hum Behav 95:126–135

    Article  Google Scholar 

  5. Trahan MH, Smith KS, Talbot TB (2019) Past, present and future: Editorial on virtual reality applications to human services[J]. J Technol Hum Serv 37(1):1–12

    Article  Google Scholar 

  6. Ejaz A, Ali SA, Ejaz MY et al (2019) Graphic user interface design principles for designing augmented reality applications[J]. Int J Adv Comput Sci Appl 10(2):209–216

    Google Scholar 

  7. Sutcliffe AG, Poullis C, Gregoriades A et al (2019) Reflecting on the design process for virtual reality applications[J]. Int J Hum Comput Interaction 35(2):168–179

    Article  Google Scholar 

  8. Elangovan H, Yao W, Nicolaides K (2019) A multimodality navigation system for endoscopic fetal surgery: a phantom case study for congenital diaphragmatic hernia[J]. Surg Innov 26(1):27–36

    Article  Google Scholar 

  9. Nguyen NQ, Cardinell J, Ramjist JM et al (2020) An augmented reality system characterization of placement accuracy in neurosurgery[J]. J Clin Neurosci 72:392–396

    Article  Google Scholar 

  10. Gehrig D, Rebecq H, Gallego G et al (2020) EKLT: Asynchronous photometric feature tracking using events and frames[J]. Int J Comput Vision 128(3):601–618

    Article  Google Scholar 

  11. Lamacie MM, Houbois CP, Greiser A et al (2019) Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR[J]. Eur Radiol 29(7):3658–3668

    Article  Google Scholar 

  12. Hao Y, Xu ZJ, Liu Y et al (2019) Effective crowd anomaly detection through spatio-temporal texture analysis[J]. Int J Autom Comput 16(1):27–39

    Article  Google Scholar 

  13. Sahin E, Stoykova E, Mäkinen J et al (2020) Computer-generated holograms for 3D imaging: a survey[J]. ACM Comput Surv 53(2):1–35

    Article  Google Scholar 

  14. Lu H, Li J, Martinez-Paniagua MA et al (2019) TIMING 2.0: High-throughput single-cell profiling of dynamic cell–cell interactions by time-lapse imaging microscopy in nanowell grids[J]. Bioinformatics 35(4):706–708

    Article  Google Scholar 

  15. Huang L, Feng X, Zhang C et al (2019) Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing[J]. Digit Commun Netw 5(1):10–17

    Article  Google Scholar 

  16. Harris TE, DeLellis SF, Heneghan JS et al (2020) Augmented reality forward damage control procedures for nonsurgeons: a feasibility demonstration[J]. Mil Med 185(Supplement_1):521–525

    Article  Google Scholar 

  17. Qiao X, Ren P, Nan G et al (2019) Mobile web augmented reality in 5G and beyond: Challenges, opportunities, and future directions[J]. China Commun 16(9):141–154

    Article  Google Scholar 

  18. He Z, Sui X, Jin G et al (2019) Progress in virtual reality and augmented reality based on holographic display[J]. Appl Opt 58(5):A74–A81

    Article  Google Scholar 

  19. Chen L, Zhang F, Zhan W et al (2020) Optimization of virtual and real registration technology based on augmented reality in a surgical navigation system[J]. BioMed Eng OnLine 19(1):1–28

    Article  Google Scholar 

  20. Jiang T, Zhu M, Chai G et al (2019) Precision of a novel craniofacial surgical navigation system based on augmented reality using an occlusal splint as a registration strategy[J]. Sci Rep 9(1):1–8

    Article  Google Scholar 

  21. Gao QH, Wan TR, Tang W et al (2019) Object registration in semi-cluttered and partial-occluded scenes for augmented reality[J]. Multimed Tools Appl 78(11):15079–15099

    Article  Google Scholar 

  22. Uppot RN, Laguna B, McCarthy CJ et al (2019) Implementing virtual and augmented reality tools for radiology education and training, communication, and clinical care[J]. Radiology 291(3):570–580

    Article  Google Scholar 

  23. Moorhouse N, tom Dieck MC, Jung T (2019) An experiential view to children learning in museums with Augmented Reality[J]. Mus Manag Curatorship 34(4):402–418

    Article  Google Scholar 

  24. Schulz P, Wolf A, Fettweis GP et al (2019) Network architectures for demanding 5G performance requirements: tailored toward specific needs of efficiency and flexibility[J]. IEEE Veh Technol Mag 14(2):33–43

    Article  Google Scholar 

  25. Yang F, Zhao Y, Wang X (2020) Camera calibration using projective invariants of sphere images[J]. IEEE Access 8:28324–28336

    Article  Google Scholar 

  26. Chen MC, Lu SQ, Liu QL (2020) Uniform regularity for a Keller-Segel-Navier-Stokes system[J]. Appl Math Lett 107:106476. https://doi.org/10.1016/j.aml.2020.106476

    Article  MathSciNet  MATH  Google Scholar 

  27. Genovese K, Chi Y, Pan B (2019) Stereo-camera calibration for large-scale DIC measurements with active phase targets and planar mirrors[J]. Opt Express 27(6):9040–9053

    Article  Google Scholar 

  28. Ma L, Tong S, Zheng H et al (2019) Edgewise serial message passing detection of uplink SCMA systems for better user fairness and faster convergence rate[J]. IEEE Wirel Commun Lett 8(4):1285–1288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, A., Zhao, S. 5G-oriented Virtual Augmented Reality Scene Construction and Business Information Flow Demonstration. Mobile Netw Appl 27, 900–911 (2022). https://doi.org/10.1007/s11036-021-01814-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-021-01814-5

Keywords

Navigation