Skip to main content

Advertisement

Log in

Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The Spodoptera frugiperda (i.e., fall armyworm) causes irreversible damage in cotton cultivars, and its visual inspection on plants is a burdensome task for humans. A recent strategy to automatically do similar tasks is processing hyperspectral reflectance measurements with machine learning algorithms. Herein, its proposed a framework for modeling the spectral response of cotton plants under the fall armyworm attacks using machine learning algorithms, culminating in a theoretical model creation based on the band simulation process. A controlled experiment was conducted to collect hyperspectral radiance measurements from health and damage cotton plants over eight days. A hand-held spectroradiometer operating from 350 to 2500 nm was used. Several algorithms were evaluated, and a ranking approach was adopted to identify the most contributive wavelengths for detecting the damage. The Self-Organizing Map method was applied to organize the spectral wavelengths into groups, favoring the theoretical model creation for two sensors: OLI (Landsat-8) and MSI (Sentinel-2). It was found that the Random Forest algorithm produced the most suitable model, and the last day of analysis was better to separate healthy and damaged plants (F-measure: 0.912). The best spectral regions range from the red to near-infrared (650 to 1350 nm) and the shortwave infrared (1570 to 1640 nm). The theoretical model returned accurate results using both sensors (OLI, F-Measure = 0.865, and MSI, F-Measure = 0.886). In conclusion, the proposed framework contributes to accurately identifying cotton plants under the Spodoptera frugiperda attack for both hyperspectral and multispectral scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdulridha, J., Batuman, O., & Ampatzidis, Y. (2019). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sensing, 11(11), 1373. https://doi.org/10.3390/rs11111373

    Article  Google Scholar 

  • Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician., 46, 175–185. https://doi.org/10.1080/00031305.1992.10475879

    Article  Google Scholar 

  • Barros, E. M., Torres, J. B., Ruberson, J. R., & Oliveira, M. D. (2010). Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton Entomol. Entomologia Experimentalis Et Applicata, 137, 237–245. https://doi.org/10.1111/j.1570-7458.2010.01058.x

    Article  Google Scholar 

  • Barsi, J. A., Lee, K., Kvaran, G., Markham, B. L., & Pedelty, J. A. (2014). The spectral response of the Landsat-8 operational land imager. Remote Sens., 6, 10232–10251. https://doi.org/10.3390/rs61010232

    Article  Google Scholar 

  • Bi, J. L., Murphy, J. B., & Felton, G. W. (1997). Antinutritive and oxidative components as mechanisms of induced resistance in cotton to Helicoverpa zea. Journal of Chemical Ecology., 23, 97–117. https://doi.org/10.1023/B:JOEC.0000006348.62578.fd

    Article  CAS  Google Scholar 

  • Bian, J., Zhang, Z., Chen, J., Chen, H., Cui, C., Li, X., Chen, S., & Fu, Q. (2019). Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery. Remote Sensing., 11, 267. https://doi.org/10.3390/rs11030267

    Article  Google Scholar 

  • Boser, B. E., Vapnik, V. N., & Guyon, I. M. (1992). Training algorithm margin for optimal classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144–152).

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Buchaillot, M. L., Cairns, J., Hamadziripi, E., Wilson, K., Hughes, D., Chelal, J., & Kefauver, S. C. (2020). Multi-scale remote sensing for fall armyworm monitoring and early warning systems. In IGARSS, IEEE international geoscience and remote sensing symposium (pp. 4886–4889). https://doi.org/10.1109/IGARSS39084.2020.9323181.

  • Cessie, S. L., & Houwelingen, J. C. V. (1992). Ridge estimators in logistic regression. Journal of the Royal Statistical Society: Series C (applied Statistics), 41, 191. https://doi.org/10.2307/2347628

    Article  Google Scholar 

  • Chen, T., Zeng, R., Guo, W., Hou, X., Lan, Y., & Zhang, L. (2018). Detection of stress in cotton (Gossypium hirsutum L) caused by aphids using leaf level hyperspectral measurements. Sensors. https://doi.org/10.3390/s18092798

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Jia, K., Xiao, C., Wei, D., Zhao, X., Lan, J., Wei, X., Yao, Y., Wang, B., & Sun, Y. (2020). Leaf area index estimation algorithm for GF-5 hyperspectral data based on different feature selection and machine learning methods. Remote Sensing, 12(13), 2110. https://doi.org/10.3390/rs12132110

    Article  Google Scholar 

  • CONAB, C.N. de A. (2020). Monitoring of the Brazilian harvest 2019/2020. Monitoring harvest. Grains 2019/2020 7, 1–68.

  • Eisenring, M., Naranjo, S. E., Bacher, S., Abbott, A., Meissle, M., & Romeis, J. (2019). Reduced caterpillar damage can benefit plant bugs in Bt cotton. Scientific Reports, 9(1), 1. https://doi.org/10.1038/s41598-019-38917-9

    Article  CAS  Google Scholar 

  • Feng, P., Wang, B., Liu, D. L., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems, 173, 303–316. https://doi.org/10.1016/j.agsy.2019.03.015

    Article  Google Scholar 

  • Gomes, E. S., Santos, V., & Ávila, C. J. (2017). Biology and fertility life table of Helicoverpa armigera (Lepidoptera: Noctuidae) in different hosts. Entomological Science, 20(1), 419–426. https://doi.org/10.1111/ens.12267

    Article  Google Scholar 

  • González, S., García, S., Del Ser, J., Rokach, L., & Herrera, F. (2020). A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities. Information Fusion, 64, 205–237. https://doi.org/10.1016/j.inffus.2020.07.007

    Article  Google Scholar 

  • Guzmán, S. M., Paz, J. O., Tagert, M. L. M., Mercer, A. E., & Pote, J. W. (2018). An integrated SVR and crop model to estimate the impacts of irrigation on daily groundwater levels. Agricultural Systems, 159, 248–259. https://doi.org/10.1016/j.agsy.2017.01.017

    Article  Google Scholar 

  • Han, J. D., & Kamber, M. (2006). Data mining concept and tehniques. Morgan Kauffman.

    Google Scholar 

  • Haykin, S. (1998). Neural networks: A comprehensive foundation (2 ed.). Prentice-Hall. ISBN 0-13-273350-1.

  • IBGE. (2019). Instituto Brasileiro de Geografia e Estatística. Indicadores IBGE - Contas nacionais trimestrais- Indicadores de volume e valores correntes. Retrieved November 2020, from https://biblioteca.ibge.gov.br/visualizacao/periodicos/2121/cnt_2019_4tri.pdf.

  • Jensen, J. R. (2014). Remote sensing of the environment: An earth resource perspective (2nd ed.). Pearson Education Limited.

    Google Scholar 

  • John, G. H. & Langley, P. (1995). Estimating continuous distributions in bayesian classifiers. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 338–345).

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69. https://doi.org/10.1007/bf00337288

    Article  Google Scholar 

  • Kohonen, T. (2001). Self-organizing maps (3rd ed., Vol. 30). Springer.

    Book  Google Scholar 

  • Li, Y., Chen, J., Ma, Q., Zhang, H. K., & Liu, J. (2018). Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1997–2021. https://doi.org/10.1109/JSTARS.2018.2835823

    Article  Google Scholar 

  • Liu, L., Dong, Y., Huang, W., Du, X., Ren, B., Huang, L., Zheng, Q. & Ma, H. (2020). A disease index for efficiently detecting wheat fusarium head blight using Sentinel-2 multispectral imagery. IEEE Access, 8, 52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310

    Article  Google Scholar 

  • Liu, Z.-Y., Qi, J.-G., Wang, N.-N., Zhu, Z.-R., Luo, J., Liu, L.-J., Tang, J. & Cheng, J.-A. (2018). Hyperspectral discrimination of foliar biotic damages in rice using principal component analysis and probabilistic neural network. Precision Agriculture. https://doi.org/10.1007/s11119-018-9567-4

    Article  Google Scholar 

  • Marin, D. B., de Carvalho Alves, M., Pozza, E. A., Belan, L. L., & de Oliveira Freitas, M. L. (2019). Multispectral radiometric monitoring of bacterial blight of coffee. Precision Agriculture, 20(5), 959–982. https://doi.org/10.1007/s11119-018-09623-9

    Article  Google Scholar 

  • Marques Ramos, A. P., Prado Osco, L., Elis Garcia Furuya, D., Nunes Gonçalves, W., Cordeiro Santana, D., Pereira Ribeiro Teodoro, L., Silva Junior, C., Capristo-Silva, G., Li, J., Rojo Baio, F., Marcato Junior, J., Teodoro, P. & Pistori, H. (2020). A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 178(July), 105791. https://doi.org/10.1016/j.compag.2020.105791

    Article  Google Scholar 

  • Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M.m Goulart, L., Davis, C. & Dandekar, A. (2015). Advanced methods of plant disease detection. A Review. Agronomy for Sustainable Development, 35(1), 1–25. https://doi.org/10.1007/s13593-014-0246-1

    Article  Google Scholar 

  • Martins, G. D., Galo, M. D. L. B. T., & Vieira, B. S. (2017). Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 5395–5403. https://doi.org/10.1109/JSTARS.2017.2737618

    Article  Google Scholar 

  • Mitchell, T. M. (1997). Machine learning (1st ed.). McGraw-Hill Inc.

    Google Scholar 

  • Nagoshi, R. N., & Meagher, R. L. (2004). Behavior and distribution of the two fall armyworm host strains in Florida. Florida Entomologist., 87, 440–449. https://doi.org/10.1653/0015-4040(2004)087

    Article  Google Scholar 

  • Nyabako, T., Mvumi, B. M., Stathers, T., Mlambo, S., & Mubayiwa, M. (2020). Predicting Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) populations and associated grain damage in smallholder farmers’ maize stores: A machine learning approach. Journal of Stored Products Research, 87, 101592. https://doi.org/10.1016/j.jspr.2020.101592

    Article  Google Scholar 

  • Onojeghuo, A. O., & Onojeghuo, A. R. (2017). Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 59, 79–91. https://doi.org/10.1016/j.jag.2017.03.007

    Article  Google Scholar 

  • Osco, L. P., Junior, J. M., Ramos, A. P. M., Furuya, D. E. G., Santana, D. C., Teodoro, L. P. R., Gonçalves, W. N., Baio, F. H. R., Pistori, H., Junior, C. A. S. & Teodoro, P. E. (2020b). Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sensing. https://doi.org/10.3390/rs12193237

    Article  Google Scholar 

  • Osco, L. P., Marques Ramos, A. P., Saito Moriya, É. A., de Souza, M., Marcato Junior, J., Matsubara, E. T., Imai, N. N. & Creste, J. E. (2019a). Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation, 83(June), 101907. https://doi.org/10.1016/j.jag.2019.101907

    Article  Google Scholar 

  • Osco, L. P., Ramos, A. P. M., Pereira, D. R., Moriya, E. A. S., Imai, N. N., Matsubara, E. T., Estrabis, N., Souza, M., Junior, J. M., Gonçalves, W. N., Li, J., Liesenberg, V. & Creste, J. E. (2019b). Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sensing, 11(24), 1–17. https://doi.org/10.3390/rs11242925

    Article  Google Scholar 

  • Osco, L. P., Ramos, A. P. M., Pinheiro, M. M. F., Moriya, É. A. S., Imai, N. N., Estrabis, N., Iancyk, F., Araújo, F. F., Liesenber, V., Jorge, L. A. C., Li, J., Ma, L., Gonçalves, W. N., Marcato Junior, J. & Creste, J. E. (2020a). A machine learning framework to predict nutrient content in valencia-orange leaf hyperspectral measurements. Remote Sensing. https://doi.org/10.3390/rs12060906

    Article  Google Scholar 

  • Pascua, L. T., & Pascua, E. M. (2002). The distribution and movement of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) larvae on cotton. Philippine Journal of Science, 131(2), 91–98.

    Google Scholar 

  • Prabhakar, M., Gopinath, K. A., Kumar, N. R., Thirupathi, M., Sravan, U. S., Kumar, G. S., & Vennila, S. (2020). Detecting the invasive fall armyworm pest incidence in farm fields of southern India using Sentinel-2A satellite data. Geocarto International. https://doi.org/10.1080/10106049.2020.1869330

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79, 189–198. https://doi.org/10.1016/j.compag.2011.09.012

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Vennila, S., Thirupathi, M., Sreedevi, G., Rao, R., & Venkateswarly, B. (2013). Hyperspectral indices for assessing damage by the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton. Computers and Electronics in Agriculture., 97, 61–70. https://doi.org/10.1016/j.compag.2013.07.004

    Article  Google Scholar 

  • Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

    Google Scholar 

  • Schmidt, L., Schurr, U., & Roese, U. S. (2009). Local and systemic effects of two herbivores with different feeding mechanisms on primary metabolism of cotton leaves. Plant, Cell & Environment., 32, 893–903. https://doi.org/10.1111/j.1365-3040.2009.01969.x

    Article  CAS  Google Scholar 

  • Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10, 1–18. https://doi.org/10.3390/agronomy10050641

    Article  CAS  Google Scholar 

  • Singh, V., Sharma, N., & Singh, S. (2020). A review of imaging techniques for plant disease detection. Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2020.10.002

    Article  Google Scholar 

  • Tageldin, A., Mostafa, H., & Mohammed, H. S. (2020). Applying Machine Learning Technology in the Prediction of Crop Infestation with Cotton Leafworm in Greenhouse. bioRxiv. https://doi.org/10.1101/2020.09.17.301168

    Article  Google Scholar 

  • Wang, T., Alex Thomasson, J., Yang, C., Isakeit, T., & Nichols, R. L. (2020). Automatic classification of cotton root rot disease based on UAV remote sensing. Remote Sensing., 12, 1310. https://doi.org/10.3390/rs12081310

    Article  Google Scholar 

  • Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K. & Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943

    Article  Google Scholar 

  • Zhu, Y. C., Blanco, C. A., Portilla, M., Adamczyk, J., Luttrell, R., & Huang, F. (2015). Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pesticide Biochemistry and Physiology, 122, 15–21. https://doi.org/10.1016/j.pestbp.2015.01.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the UFMS (Federal University of Mato Grosso do Sul) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001).

Funding

This research was partially funded by National Council for Scientific and Technological Development (CNPq), project number: 433783/2018-4, 303559/2019-5, and 304052/2019-1, and received financial support from the Brazilian Corporation of Agricultural Research (EMBRAPA), project number: 11.14.09.001.04.00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Prado Osco.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept e-mail from < lucasosco@unoeste.br > .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, A.P.M., Gomes, F.D.G., Pinheiro, M.M.F. et al. Detecting the attack of the fall armyworm (Spodoptera frugiperda) in cotton plants with machine learning and spectral measurements. Precision Agric 23, 470–491 (2022). https://doi.org/10.1007/s11119-021-09845-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09845-4

Keywords

Navigation